【題目】如圖,于點(diǎn),于點(diǎn),平分交于點(diǎn),點(diǎn)為線段延長線上一點(diǎn),.則下列結(jié)論:①;②;③;④若,則,正確的有:________.(只填序號)
【答案】①②③.
【解析】
依據(jù)AB⊥BC于點(diǎn)B,DC⊥BC于點(diǎn)C,即可得到AB∥CF,進(jìn)而得出,∠BAF+∠F=180°,再根據(jù)∠BAF=∠EDF,即可得出ED∥AF,依據(jù)三角形外角性質(zhì)以及角平分線的定義,即可得到∠DAF=∠F.
解:如圖,
∵AB⊥BC于點(diǎn)B,DC⊥BC于點(diǎn)C,
∴∠B+∠C=180°,
∴AB∥CF,
∴∠BAF+∠F=180°,(①正確),
又∵∠BAF=∠EDF,
∴∠EDF+∠F=180°,
∴ED∥AF(②正確),
∴∠ADE=∠DAF,∠EDC=∠F,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠DAF=∠F(③正確);
若,條件不足證不到,所以④不正確.
故答案是:①②③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E為矩形ABCD的邊BC長上的一點(diǎn),作DF⊥AE于點(diǎn)F,且滿足DF=AB.下面結(jié)論:①△DEF≌△DEC;②S△ABE = S△ADF;③AF=AB;④BE=AF.其中正確的結(jié)論是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,∠D=60°,AB=4,E為邊BC上的動點(diǎn),連接AE,作AE的垂直平分線GF交直線CD于F點(diǎn),垂足為點(diǎn)G,則線段GF的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=kx﹣6(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(4,b).
(1)b= ;k= ;
(2)點(diǎn)C是線段AB上一點(diǎn),過點(diǎn)C且平行于y軸的直線l交該反比例函數(shù)的圖象于點(diǎn)D,連接OC,OD,BD,若四邊形OCBD的面積S四邊形OCBD=,求點(diǎn)C的坐標(biāo);
(3)將第(2)小題中的△OCD沿射線AB方向平移一定的距離后,得到△O'C'D',若點(diǎn)O的對應(yīng)點(diǎn)O'恰好落在該反比例函數(shù)圖象上(如圖2),求此時點(diǎn)D的對應(yīng)點(diǎn)D'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上有三點(diǎn)A、B、C,若用AB表示A、B兩點(diǎn)的距離,AC表示A、C兩點(diǎn)的距離,且AB=AC,點(diǎn)A、點(diǎn)C對應(yīng)的數(shù)是分別是a、c,且|a+40|+|c﹣20|=0.
(1)求BC的長.
(2)若點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā)向左運(yùn)動,速度分別為2個單位長度每秒、5個單位長度每秒,則運(yùn)動了多少秒時,Q到B的距離與P到B的距離相等?
(3)若點(diǎn)P、Q仍然以(2)中的速度分別從A、C兩點(diǎn)同時出發(fā)向左運(yùn)動,2秒后,動點(diǎn)R從A點(diǎn)出發(fā)向右運(yùn)動,點(diǎn)R的速度為1個單位長度每秒,點(diǎn)M為線段PR的中點(diǎn),點(diǎn)N為線段RQ的中點(diǎn),點(diǎn)R運(yùn)動了多少秒時恰好滿足MN+AQ=31;并求出此時R點(diǎn)所對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)著說點(diǎn)理:補(bǔ)全證明過程:
如圖,已知,,垂足分別為,,,試證明:.請補(bǔ)充證明過程,并在括號內(nèi)填上相應(yīng)的理由.
證明:∵,(已知)
∴(___________________),
∴(___________________),
∴________(___________________).
又∵(已知),
∴(___________________),
∴________(___________________),
∴(___________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)若點(diǎn)P,Q同時從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時,△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請直接判定此時四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暖羊羊有5張寫著不同數(shù)字的卡片,請你按要求選擇卡片,完成下列各問題:
(1)從中選擇兩張卡片,使這兩張卡片上數(shù)字的乘積最大.
這兩張卡片上的數(shù)字分別是 ,積為 _.
(2)從中選擇兩張卡片,使這兩張卡片上數(shù)字相除的商最小.
這兩張卡片上的數(shù)字分別是 ,商為 .
(3)從中選擇4張卡片,每張卡片上的數(shù)字只能用一次,選擇加、減、乘、除中的適當(dāng)方法(可加括號),使其運(yùn)算結(jié)果為24,寫出運(yùn)算式子.(寫出一種即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若方程的一個根是﹣1,求另一個根及 k 值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com