【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)(a>0)圖像與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸的交于點(diǎn)C,頂點(diǎn)為D .
(1)求點(diǎn)A、B的坐標(biāo);
(2)若M為對(duì)稱軸與x軸交點(diǎn),且DM=2AM,
①求二次函數(shù)解析式;
②當(dāng)30°<∠ADM<45°時(shí),求a的取值范圍.
【答案】(1)A(-1,0),B(3,0)(2)① ②<a<.
【解析】
(1)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案;
(2)①根據(jù)含數(shù)值相等點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,可得拋物線的對(duì)稱軸,根據(jù)DM與AM的關(guān)系,可得頂點(diǎn)的縱坐標(biāo),根據(jù)待定系數(shù)法,可得答案.
②根據(jù)正切函數(shù),可得頂點(diǎn)的縱坐標(biāo),根據(jù)待定系數(shù)法,可得a的值,根據(jù)|a|的值越大,拋物線的開口越小,可得答案.
(1)令y=0,得,
解得,x2=3.
∴A(-1,0),B(3,0).
(2)①∴AB=4.
∵拋物線對(duì)稱軸為x=1,
∴AM=2.
∵DM=2AM,
∴DM=4.
∴D(1,-4).
∴a=1.
∴拋物線的表達(dá)式為
②∴AB=4.
∵拋物線對(duì)稱軸為x=1,
∴AM=2.
當(dāng)∠ADM=45°時(shí),tan45°==1,解得DM=2,
即D(1,-2),
將D點(diǎn)坐標(biāo)代入函數(shù)解析式,得
a-2a-3a=-2
a=.
當(dāng)∠ADM=30°時(shí),tan30°==,解得DM=2,
即D(1,-2),
將D點(diǎn)坐標(biāo)代入函數(shù)解析式,得
a-2a-3a=-2
a=.
由|a|的值越大,拋物線的開口越大小,得
30°<∠ADM<45°時(shí),
∴<a<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假定甲、乙兩人在一次賽跑中,路程S與時(shí)間T的關(guān)系在平面直角坐標(biāo)系中如圖所示,請(qǐng)結(jié)合圖形和數(shù)據(jù)回答問題:
(1)這是一次 米賽跑;
(2)甲、乙兩人中先到達(dá)終點(diǎn)的是 ;
(3)乙在這次賽跑中的速度為 ;
(4)甲到達(dá)終點(diǎn)時(shí),乙離終點(diǎn)還有 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B是反比例函數(shù)y=圖象上的兩點(diǎn),已知點(diǎn)B的坐標(biāo)為(3,2),△AOB的面積為2.5,求該反比例函數(shù)的解析式和點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條自南向北的大道上有O、A兩個(gè)景點(diǎn),O、A相距20km,在O處測(cè)得另一景點(diǎn)C位于點(diǎn)O的北偏東37°方向,在A處測(cè)得景點(diǎn)C位于點(diǎn)A的南偏東76°方向,且A、C相距13km .
(1)求:①A到OC之間的距離;
②O、C兩景點(diǎn)之間的距離;
(2)若在O處測(cè)得景點(diǎn)B 位于景點(diǎn)O的正東方向10km,求B、C兩景點(diǎn)之間的距離.(參考數(shù)據(jù):tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請(qǐng)按下列要求畫圖:
(1)將△ABC先向右平移4個(gè)單位長度、再向下平移1個(gè)單位長度,得到△A1B1C1,畫出△A1B1C1;
(2)畫出與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】孔明同學(xué)對(duì)本校學(xué)生會(huì)組織的“為貧困山區(qū)獻(xiàn)愛心”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調(diào)查中捐款30元的學(xué)生一共16人.
(1)孔明同學(xué)調(diào)查的這組學(xué)生共有_______人;
(2)這組數(shù)據(jù)的眾數(shù)是_____元,中位數(shù)是_____元;
(3)若該校有2000名學(xué)生,都進(jìn)行了捐款,估計(jì)全校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以OA的長為半徑的圓O與AD,AC分別交于點(diǎn)E,F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AB=2,BC=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P是⊙O外一點(diǎn),PO交⊙O于點(diǎn)C,OC=CP=4,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com