如圖,在△ABC中,∠C是直角,AC=12,BC=16,以C為圓心,AC為半徑的圓交斜邊AB于D,求AD的長.

【答案】分析:過C作CE⊥AB于E,根據(jù)垂徑定理得出AD=2AE,根據(jù)勾股定理求AB,根據(jù)三角形面積公式求出CE,根據(jù)勾股定理求出AE即可.
解答:解:過C作CE⊥AB于E,
∵CE⊥AB,CE過圓心C,
∴AD=2AE.
∵△ABC中,∠C是直角,AC=12,BC=16,
∴由勾股定理得:AB==20,
由三角形的面積公式得:AC×BC=AB×CE,
12×16=20CE,
∴CE=,
在△AEC中,由勾股定理得:AE==,
∴AD=2AE=
點評:本題考查了勾股定理,垂徑定理,三角形的面積等知識點的應用,關鍵是求出AE的長,主要培養(yǎng)學生運用定理進行推理的能力,題目比較典型,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案