(2008•海南)如圖,AB是⊙O的直徑,AC是⊙O的切線,A為切點,連接BC,若∠ABC=45°,則下列結論正確的是( )

A.AC>AB
B.AC=AB
C.AC<AB
D.AC=BC
【答案】分析:由AC是⊙O的切線,A為切點可以得到∠A=90°,而∠ABC=45°,由此得到△ABC是等腰直角三角形,即可求出結論.
解答:解:如圖,∵AC是⊙O的切線,A為切點,
∴∠A=90°,
∵∠ABC=45°,
∴△ABC是等腰直角三角形,
即AB=AC,
故選B.
點評:本題利用了切線的性質,等腰直角三角形的判定和性質求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•海南)如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)關系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2008•海南)如圖,直線l1和l2的交點坐標為( )

A.(4,-2)
B.(2,-4)
C.(-4,2)
D.(3,-1)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年重慶市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•海南)如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)關系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省德州市平原縣中考數(shù)學二模試卷(解析版) 題型:解答題

(2008•海南)如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)關系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年海南省中考數(shù)學試卷(解析版) 題型:解答題

(2008•海南)如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)關系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案