(2012•哈爾濱)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=2x+4交x軸于點(diǎn)A,交y軸于點(diǎn)B,四邊形ABCO是平行四邊形,直線y=-x+m經(jīng)過點(diǎn)C,交x軸于點(diǎn)D.
(1)求m的值;
(2)點(diǎn)P(0,t)是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與0,B兩點(diǎn)重合),過點(diǎn)P作x軸的平行線,分別交AB,OC,DC于點(diǎn)E,F(xiàn),G,設(shè)線段EG的長為d,求d與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,點(diǎn)H是線段OB上一點(diǎn),連接BG交OC于點(diǎn)M,當(dāng)以O(shè)G為直徑的圓經(jīng)過點(diǎn)M時(shí),恰好使∠BFH=∠ABO,求此時(shí)t的值及點(diǎn)H的坐標(biāo).
分析:(1)方法一:先根據(jù)直線y=2x+4求出點(diǎn)A、B的坐標(biāo),從而得到OA、OB的長度,再根據(jù)平行四邊形的對(duì)邊相等求出BC的長度,過點(diǎn)C作CK⊥x軸于K,從而得到四邊形BOKC是矩形,根據(jù)矩形的對(duì)邊相等求出KC的長度,從而得到點(diǎn)C的坐標(biāo),然后把點(diǎn)C的坐標(biāo)代入直線即可求出m的值;
方法二:先根據(jù)直線y=2x+4求出點(diǎn)A、B的坐標(biāo),從而得到OA、OB的長度,在延長DC交y軸于點(diǎn)N,根據(jù)直線y=-x+m求出D、N的坐標(biāo),并得到OD=ON,從而得到∠ODN=∠OND=45°,再根據(jù)平行四邊形的對(duì)邊相得到BC=OA=2,根據(jù)對(duì)邊平行得到BC∥AO,然后再求出BN=BC=2,求出ON的長度,即為直線y=-x+m的m的值;
(2)方法一:延長DC交y軸于N分別過點(diǎn)E,G作x軸的垂線 垂足分別是R,Q則四邊形ERQG、四邊形POQG、四邊形EROP是矩形,再利用∠BAO的正切值求出AR的長度,利用∠ODN的正切值求出DQ的長度,再利用AD的長度減去AR的長度,再減去DQ的長度,計(jì)算即可得解;
方法二:利用直線AB的解析式求出點(diǎn)E的橫坐標(biāo),利用直線CD的解析式求出點(diǎn)G的橫坐標(biāo),用點(diǎn)G的橫坐標(biāo)減去點(diǎn)E的橫坐標(biāo),計(jì)算即可得解;
(3)方法一:根據(jù)平行四邊形的對(duì)邊平行可得AB∥OC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠ABO=∠BOC,用t表示出BP,再根據(jù)∠ABO與∠BOC的正切值相等列式求出EP的長度,再表示出PG的長度,然后根據(jù)直徑所對(duì)的圓周角是直角可得∠OMC=90°,根據(jù)直角推出∠BGP=∠BOC,再利用∠BGP與∠BOC的正切值相等列式求解即可得到t的值;先根據(jù)加的關(guān)系求出∠OBF=∠FBH,再判定△BHF和△BFO相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得
BH
BF
=
BF
BO
,再根據(jù)t=2求出OP=2,PF=1,BP=2,利用勾股定理求出BF的長度,代入數(shù)據(jù)進(jìn)行計(jì)算即可求出BH的值,然后求出HO的值,從而得到點(diǎn)H的坐標(biāo);
方法二:同方法一求出t=2,然后求出OP=2,BP=2,再求出PF=1,根據(jù)勾股定理求出OF與BF的長度相等,都等于
5
,根據(jù)等邊對(duì)等角的性質(zhì)可得∠OBF=∠BOC=∠BFH=∠ABO,再根據(jù)等角對(duì)等邊的性質(zhì)可得BH=HF,然后過點(diǎn)H作HT⊥BF于點(diǎn)T,利用∠OBF的余弦求解得到BH,然后求出HO的值,從而得到點(diǎn)H的坐標(biāo);
方法三:先由勾股定理求出AB的長度,然后用t表示出BP,再根據(jù)∠ABO的余弦列式求出BE的長度,根據(jù)直徑所對(duì)的圓周角是直角可得∠OMG=90°,然后根據(jù)同角的余角相等可得∠ABO=∠BGE,再根據(jù)∠ABO和∠BGE的正弦值相等列式求解即可得到t=2,下邊求解與方法一相同.
解答:(1)解:方法一:如圖1,∵y=2x+4交x軸和y軸于A,B,
∴A(-2,0)B(0,4),
∴OA=2,OB=4,
∵四邊形ABCO是平行四邊形,
∴BC=OA=2 過點(diǎn)C作CK⊥x軸于K,
則四邊形BOKC是矩形,
∴OK=BC=2,CK=OB=4,
∴C(2,4)代入y=-x+m得,4=-2+m,
∴m=6;

方法二,如圖2,∵y=2x+4交x軸和y軸于A,B,
∴A(-2,0)B(0,4),
∴OA=2 OB=4,
延長DC交y軸于點(diǎn)N,
∵y=-x+m交x軸和y軸于點(diǎn)D,N,
∴D(m,0)N(0,m),
∴OD=ON,
∴∠ODN=∠OND=45°,
∵四邊形ABCO是平行四邊形,
∴BC∥AO,BC=OA=2,
∴∠NCB=∠ODN=∠OND=45°,
∴NB=BC=2,
∴ON=NB+OB=2+4=6,
∴m=6;

(2)解:方法一,如圖3,延長DC交y軸于N分別過點(diǎn)E,G作x軸的垂線 垂足分別是R,Q則四邊形ERQG、四邊形POQG、四邊形EROP是矩形,
∴ER=PO=GQ=t,
∵tan∠BAO=
ER
AR
=
OB
OA
,
t
AR
=
4
2

∴AR=
1
2
t,
∵y=-x+6交x軸和y軸于D,N,
∴OD=ON=6,
∴∠ODN=45°,
∵tan∠ODN=
GQ
QD
,
∴DQ=t,
又∵AD=AO+OD=2+6=8,
∴EG=RQ=8-
1
2
t-t=8-
3
2
t,
∴d=-
3
2
t+8(0<t<4);

方法二,如圖4,∵EG∥AD,P(O,t),
∴設(shè)E(x1,t),G(x2,t),
把E(x1,t)代入y=2x+4得t=2x1+4,
∴x1=
t
2
-2,
把G(x2,t)代入y=-x+6得t=-x2+6,
∴x2=6-t,
∴d=EG=x2-x1=(6-t)-(
t
2
-2)=8-
3
2
t,
即d=-
3
2
t+8(0<t<4);

(3)解:方法一,如圖5,∵四邊形ABCO是平行四邊形,
∴AB∥OC,
∴∠ABO=∠BOC,
∵BP=4-t,
∴tan∠AB0=
EP
BP
=tan∠BOC=
1
2
,
∴EP=2-
t
2

∴PG=d-EP=6-t,
∵以O(shè)G為直徑的圓經(jīng)過點(diǎn)M,
∴∠OMG=90°,∠MFG=∠PFO,
∴∠BGP=∠BOC,
∴tan∠BGP=
BP
PG
=tan∠BOC=
1
2
,
4-t
6-t
=
1
2

解得t=2,
∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH,
∴△BHF∽△BFO,
BH
BF
=
BF
BO
,
即BF2=BH•BO,
∵OP=2,
∴PF=1,BP=2,
∴BF=
BP2+PF2
=
5
,
∴5=BH×4,
∴BH=
5
4
,
∴HO=4-
5
4
=
11
4
,
∴H(0,
11
4
);

方法二,如圖6,∵四邊形ABCO是平行四邊形,
∴AB∥OC,
∴∠ABO=∠BOC,
∵BP=4-t,
∴tan∠AB0=
EP
BP
=tan∠BOC=
1
2
,
∴EP=2-
t
2
,
∴PG=d-EP=6-t,
∵以O(shè)G為直徑的圓經(jīng)過點(diǎn)M,
∴∠OMG=90°,∠MFG=∠PFO,
∴∠BGP=∠BOC,
∴tan∠BGP=
BP
PG
=tan∠BOC=
1
2

4-t
6-t
=
1
2
,
解得t=2,
∴OP=2,BP=4-t=2,
∴PF=1,
∴OF=
12+22
=
5
=BF,
∴∠OBF=∠BOC=∠BFH=∠ABO,
∴BH=HF,
過點(diǎn)H作HT⊥BF于點(diǎn)T,
∴BT=
1
2
BF=
5
2
,
∴BH=
BT
cos∠OBF
=
5
2
2
5
=
5
4

∴OH=4-
5
4
=
11
4
,
∴H(0,
11
4
);

方法三,如圖7,∵OA=2,OB=4,
∴由勾股定理得,AB=2
5
,
∵P(O,t),
∴BP=4-t,
∵cos∠ABO=
BP
BE
=
4-t
BE
=
OB
AB
=
4
2
5
,
∴BE=
5
2
(4-t),
∵以O(shè)G為直徑的圓經(jīng)過點(diǎn)M,
∴∠OMG=90°,
∵四邊形ABCO是平行四邊形,
∴AB∥OC,
∴∠ABG=∠OMG=90°=∠BPG,
∴∠ABO+∠BEG=90°,∠BGE+∠BEG=90°,
∴∠ABO=∠BGE,
∴sin∠ABO=sin∠BGE,
OA
AB
=
BE
EG
=
BE
d
,
2
2
5
=
5
2
(4-t)
8-
3t
2
,
∴t=2,
∵∠BFH=∠ABO=BOC,∠OBF=∠FBH,
∴△BHF∽△BFO,
BH
BF
=
BF
BO
,
即BF2=BH•BO,
∵OP=2,
∴PF=1,BP=2,
∴BF=
BP2+PF2
=
5

∴5=BH×4,
∴BH=
5
4
,
∴OH=4-
5
4
=
11
4
,
∴H(0,
11
4
).
點(diǎn)評(píng):本題是對(duì)一次函數(shù)的綜合考查,主要利用了直線與坐標(biāo)軸的交點(diǎn)的求解,平行四邊形的對(duì)邊平行且相等的性質(zhì),相似三角形的判定與性質(zhì),勾股定理,直徑所對(duì)的圓周角是直角的性質(zhì),解直角三角形的應(yīng)用,綜合性較強(qiáng),難度較大,根據(jù)不同的思路,可以找到不同的求解方法,一題多解,舉一反三,希望同學(xué)們認(rèn)真研究、仔細(xì)琢磨.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)一個(gè)圓錐的母線長為4,側(cè)面積為8π,則這個(gè)圓錐的底面圓的半徑是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)下列圖形是中心對(duì)稱圖形的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)如圖所示的幾何體是由六個(gè)小正方體組合而成的,它的左視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)如圖,四邊形ABCD是矩形,點(diǎn)E在線段CB的延長線上,連接DE交AB于點(diǎn)F,∠AED=2∠CED,點(diǎn)G是DF的中點(diǎn),若BE=1,AG=4,則AB的長為
15
15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40cm,這個(gè)三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案