如圖:在直角坐標(biāo)系中,以點(diǎn)A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C兩點(diǎn),與y軸相交于D、E兩點(diǎn).
(1)若拋物線經(jīng)過(guò)C、D兩點(diǎn),求此拋物線的解析式,并判斷點(diǎn)B是否在這條拋物線上?
(2)過(guò)點(diǎn)E的直線y=kx+m交x軸于F(,0),求此直線的解析式,這條直線是⊙A的切線嗎?請(qǐng)說(shuō)明理由;
(3)探索:是否能在(1)中的拋物線上找到一點(diǎn)Q,使直線BQ與x軸正方向所夾銳角的正切值等于?若能,請(qǐng)直接寫(xiě)出Q點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】分析:(1)連接AE,利用垂徑定理可求出點(diǎn)D的坐標(biāo)為(0,-4),根據(jù)圓的半徑為5,可得出點(diǎn)C的坐標(biāo)為(8,0),利用待定系數(shù)法求解即可;
(2)根據(jù)直線經(jīng)過(guò)點(diǎn)E(0,4),可設(shè)直線解析式為y=kx+4,將點(diǎn)F的坐標(biāo)代入可得出直線解析式,分別求出EF2,AF2,AE2,利用勾股定理的逆定理判斷出∠AEF為直角,繼而根據(jù)切線的判定可得出結(jié)論;
(3)由(1)得點(diǎn)B在拋物線上,設(shè)點(diǎn)Q的坐標(biāo)為(x,x2-x-4),分別討論點(diǎn)Q的位置,①點(diǎn)Q在x軸上方,②點(diǎn)Q在x軸下方,利用正切值建立方程,解出即可得出答案.
解答:解:連接AE,

由題意得,OD=OE=4,
故可得:C、D兩點(diǎn)坐標(biāo)為:C(8,0),D(0,-4),
把C、D兩點(diǎn)坐標(biāo)代入中,
得:,
 解得:,
故所求二次函數(shù)為:,
∵B點(diǎn)坐標(biāo)為(-2,0),
∴當(dāng)x=-2時(shí),,
∴點(diǎn)B在這條拋物線上.

(2)因?yàn)橹本經(jīng)過(guò)點(diǎn)E(0,4),可設(shè)解析式為:y=kx+4,
把點(diǎn)F(,0)代入上式得:,
故所求一次函數(shù)為:
在Rt△OEF中,EF2=OE2+OF2=16+=,
在△AEF中,AF=3+,

∴EF2+AE2=+25==AF2,
∴∠AEF=90°,
∴EF是⊙O的切線.
(3)能找到這樣的點(diǎn)Q,
設(shè)存在點(diǎn)Q(x,x2-x-4),
∵直線BQ與x軸正方向所夾銳角的正切值等于,
①若點(diǎn)Q在x軸上方時(shí),此時(shí)=,
解得:x1=9,x2=-2(舍去),
故此時(shí)點(diǎn)Q的坐標(biāo)為(9,);
②若點(diǎn)Q在x軸下方時(shí),=,
解得:x1=7,x2=-2(舍去),
故此時(shí)點(diǎn)Q的坐標(biāo)為(7,-).
故可得存在點(diǎn)Q的坐標(biāo),其坐標(biāo)分別為:(9,) 和 ().
點(diǎn)評(píng):此題屬于圓的綜合題,涉及了切線的判定、待定系數(shù)法求函數(shù)解析式及三角函數(shù)的知識(shí),綜合性較強(qiáng),難度較大,解答本題的關(guān)鍵是掌握各個(gè)知識(shí)點(diǎn)之間的融會(huì)貫通.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫(huà)出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫(huà)出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案