如圖,已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、BA、AE三者之間有何關(guān)系?并加以證明.

【答案】分析:過E作ED⊥BC交BC于點D,求出AE=DE,證Rt△BAE≌Rt△BDE推出AB=BD,求出CD=DE=AE,即可得出答案.
解答:解:BC、BA、AE三者之間的關(guān)系:BC=BA+AE,理由如下:
過E作ED⊥BC交BC于點D,
∵BE平分∠ABC,BA⊥CA,
∴AE=DE,∠EDC=∠A=∠BDE=90°,
∵在Rt△BAE和Rt△BDE中
,
∴Rt△BAE≌Rt△BDE(HL),
∴BA=BD,
∵AB=AC,∠A=90°
∴∠C=45°,
∴∠CED=45°=∠C,
∴DE=CD,
∵AE=DE,
∴AE=CD=DE,
∴BC=BD+DC=BA+AE.
點評:本題考查了全等三角形的性質(zhì)和判定,角平分線性質(zhì),等腰直角三角形性質(zhì),三角形的內(nèi)角和定理等知識點的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案