已知:拋物線

(1)寫出拋物線的開口方向、對稱軸;

(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲担

(3)設(shè)拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.

【考點】二次函數(shù)的性質(zhì);待定系數(shù)法求一次函數(shù)解析式;二次函數(shù)的最值;拋物線與x軸的交點.

【分析】(1)根據(jù)二次函數(shù)的性質(zhì),寫出開口方向與對稱軸即可;

(2)根據(jù)a是正數(shù)確定有最小值,再根據(jù)函數(shù)解析式寫出最小值;

(3)分別求出點P、Q的坐標(biāo),再根據(jù)待定系數(shù)法求函數(shù)解析式解答.

【解答】解:(1)拋物線,

∵a= >0,

∴拋物線的開口向上,

對稱軸為x=1;

(2)∵a=>0,

∴函數(shù)y有最小值,最小值為-3;

(3)令x=0,則 ,

所以,點P的坐標(biāo)為(0, ),

令y=0,則,

解得x1=-1,x2=3,

所以,點Q的坐標(biāo)為(-1,0)或(3,0),

當(dāng)點P(0, ),Q(-1,0)時,設(shè)直線PQ的解析式為y=kx+b,

  ,解得 k=, b= ,

所以直線PQ的解析式為

當(dāng)P(0, ),Q(3,0)時,設(shè)直線PQ的解析式為y=mx+n,

  ,解得 m= , n=- ,

所以,直線PQ的解析式為,

綜上所述,直線PQ的解析式為y=-9 4 x-9 4 或y=3 4 x-9 4 .

【點評】本題主要考查了二次函數(shù)的性質(zhì),二次函數(shù)的最值問題,待定系數(shù)法求函數(shù)解析式,以及拋物線與x軸的交點問題,是基礎(chǔ)題,熟記二次函數(shù)的開口方向,對稱軸解析式與二次函數(shù)的系數(shù)的關(guān)系是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知一拋物線與x軸的交點是A(-1,0)、B(m,0)且經(jīng)過第四象限的點C(1,n),而m+n=-1,mn=-12,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點,C是拋物線的頂點.
(1)用配方法求頂點C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為2
2
,求拋物線的解析式.”解法的部分步驟如下,補全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對稱軸與x軸交于點D(
 
,0)
∵拋物線的對稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-6x+c的最小值為1,那么c的值是( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結(jié)合圖象回答:當(dāng)直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽城模擬)如圖a,在平面直角坐標(biāo)系中,A(0,6),B(4,0)

(1)按要求畫圖:在圖a中,以原點O為位似中心,按比例尺1:2,將△AOB縮小,得到△DOC,使△AOB與△DOC在原點O的兩側(cè);并寫出點A的對應(yīng)點D的坐標(biāo)為
(0,-3)
(0,-3)
,點B的對應(yīng)點C的坐標(biāo)為
(-2,0)
(-2,0)
;
(2)已知某拋物線經(jīng)過B、C、D三點,求該拋物線的函數(shù)關(guān)系式,并畫出大致圖象;
(3)連接DB,若點P在CB上,從點C向點B以每秒1個單位運動,點Q在BD上,從點B向點D以每秒1個單位運動,若P、Q兩點同時分別從點C、點B點出發(fā),經(jīng)過t秒,當(dāng)t為何值時,△BPQ是等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案