【題目】如圖1,四邊形ABCD內(nèi)接于圓O,AC是圓O的直徑,過點A的切線與CD的延長線相交于點P.且∠APC=∠BCP.
(1)求證:∠BAC=2∠ACD.
(2)過圖1中的點D作DE⊥AC于E,交BC于G(如圖2),BG:GE=3:5,OE=5,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑為13.
【解析】
(1)連接BD,作DF⊥BC于F,由切線的性質(zhì)得出∠PAC=90°,由圓周角定理得出∠ADC=90°,證出∠APC=∠DAC=∠DBC,得出∠DBC=∠BCP,證出BD=CD,由等腰三角形的性質(zhì)和垂徑定理得出BF=CF=BC,D、O、F三點共線,∠CDF=∠BDC,由圓周角定理和等腰三角形的性質(zhì)即可得出結(jié)論;
(2)設(shè)BG=3x,則GE=5x,證明△DEC≌△CFD(AAS),得出DE=CF,CE=DF,求出OE=OF=5,證明△GDF≌△GCE(ASA),得出GF=GE=5x,得出DE=CF=BF=BG+GF=8x,DG=DE+GE=13x,由勾股定理得出DF==12x,證明△ODE∽△GDF,得出=,解得x=,進而得出答案.
證明:(1)連接BD,作DF⊥BC于F,如圖1所示:
∵PA是⊙O的切線,
∴PA⊥AC,
∴∠PAC=90°,
∴∠APC+∠ACP=90°,
∵AC是圓O的直徑,
∴∠ADC=90°,
∴∠DAC+∠ACP=90°,
∴∠APC=∠DAC=∠DBC,
∵∠APC=∠BCP,
∴∠DBC=∠BCP,
∴BD=CD,
∵DF⊥BC,
∴BF=CF=BC,D、O、F三點共線,
∴∠CDF=∠BDC,
∵∠BDC=∠BAC,
∴∠BAC=2∠CDF,
∵OD=OC,
∴∠CDF=∠ACD,
∴∠BAC=2∠ACD;
解:(2)∵BG:GE=3:5,
∴設(shè)BG=3x,則GE=5x,
∵DE⊥AC,
∴∠DEC=90°=∠CFD,
在△DEC和△CFD中,,
∴△DEC≌△CFD(AAS),
∴DE=CF,CE=DF,
∴OE﹣OC=DF﹣OD,即OE=OF=5,
∵∠DGF+∠GDF=∠DGF+∠GCE=90°,
∴∠GDF=∠GCE,
在△GDF和△GCE中,,
∴△GDF≌△GCE(ASA),
∴GF=GE=5x,
∴DE=CF=BF=BG+GF=3x+5x=8x,
∴DG=DE+GE=13x,
∴DF===12x,
∵∠ODE=∠GDF,∠DEO=∠DFG=90°,
∴△ODE∽△GDF,
∴=,即=,
解得:x=,
∴DF=12×=18,
∴OD=DF﹣OF=18﹣5=13,
即⊙O的半徑為13.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣12的圖象交x軸于A(﹣3,0),B(5,0)兩點,與y軸交于點C.點D是拋物線上的一個動點.
(1)求拋物線的解析式;
(2)設(shè)點D的橫坐標(biāo)為m,并且當(dāng)m≤x≤m+5時,對應(yīng)的函數(shù)值y滿足﹣m,求m的值;
(3)若點D在第四象限內(nèi),過點D作DE∥y軸交BC于E,DF⊥BC于F.線段EF的長度是否存在最大值?若存在,請求出這個最大值及相應(yīng)點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩條邊的長是方程的兩根沿直線將矩形折疊,點落在第一象限的點處,交軸于點.
(1)求點和點的坐標(biāo);
(2)將直線以每秒個單位長度的速度沿軸向下平移,求直線掃過的三角形的面積關(guān)于運動的時間的函數(shù)關(guān)系式;
(3)在(2)的條件下,在移動的直線上是否存在點,使以為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解九(1)班學(xué)生的體溫情況,對這個班所有學(xué)生測量了一次體溫(單位:℃),小明將測量結(jié)果繪制成如下統(tǒng)計表和如圖所示的扇形統(tǒng)計圖.下列說法錯誤的是( )
體溫(℃) | 36.1 | 36.2 | 36.3 | 36.4 | 36.5 | 36.6 |
人數(shù)(人) | 4 | 8 | 8 | 10 | x | 2 |
A.這些體溫的眾數(shù)是8
B.這些體溫的中位數(shù)是36.35
C.這個班有40名學(xué)生
D.x=8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于坐標(biāo)平面內(nèi)的點,先將該點向右平移1個單位,再向上平移2個單位,這種點的運動稱為點的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標(biāo)為(3,5).已知點A的坐標(biāo)為(1,0).如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點為點B,點B關(guān)于直線l的對稱點為點C.若點B由點A經(jīng)n次斜平移后得到,且點C的坐標(biāo)為(7,6),則點B的坐標(biāo)為_____及n的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字1和-2;乙袋中有三個完全相同的小球,分別標(biāo)有數(shù)字-1、0和2.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數(shù)字為y,設(shè)點A的坐標(biāo)為(x,y).
(1)請用表格或樹狀圖列出點A所有可能的坐標(biāo);
(2)求點A在反比例函數(shù)y=圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司甲、乙兩名快遞員7月上旬10天里派送快遞,乙比甲晚工作一段時間,工作期間快遞員甲因事停工3天,各自的工作效率一定,他們各自的工作量(件)隨工作時間(天)變化的圖像如圖所示.則有下列說法:①甲工人的工作效率為60件/天;②乙工人每天比甲工人少送10件;③甲工人一共送420件;④乙比甲少工作2天.其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育組為了了解九年級450名學(xué)生排球墊球的情況,隨機抽查了九年級部分學(xué)生進行排球墊球測試(單位:個),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計圖表:
組別 | 個數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級排球墊球測試結(jié)果小于10的人數(shù);
(3)排球墊球測試結(jié)果小于10的為不達標(biāo),若不達標(biāo)的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線經(jīng)過坐標(biāo)原點.
(1)求拋物線的解析式和頂點B的坐標(biāo);
(2)設(shè)點A是拋物線與x軸的另一個交點且A、C兩點關(guān)于y軸對稱,試在y軸上確定一點P,使PA+PB最短,并求出點P的坐標(biāo);
(3)過點A作AD∥BP交y軸于點D,求到直線AP、AD、CP距離相等的點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com