【題目】如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接DG,過點(diǎn)A作AH∥DG,交BG于點(diǎn)H.連接HF,AF,其中AF交EC于點(diǎn)M.
(1)求證:△AHF為等腰直角三角形.
(2)若AB=3,EC=5,求EM的長.
【答案】(1)見解析;(2)EM=
【解析】
(1)通過證明四邊形AHGD是平行四邊形,可得AH=DG,AD=HG=CD,由“SAS”可證△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可證AH⊥HF,AH=HF,即可得結(jié)論;
(2)由題意可得DE=2,由平行線分線段成比例可得 ,即可求EM的長.
證明:(1)∵四邊形ABCD,四邊形ECGF都是正方形
∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°
∵AD∥BC,AH∥DG,
∴四邊形AHGD是平行四邊形
∴AH=DG,AD=HG=CD,
∵CD=HG,∠ECG=∠CGF=90°,FG=CG,
∴△DCG≌△HGF(SAS),
∴DG=HF,∠HFG=∠HGD
∴AH=HF,
∵∠HGD+∠DGF=90°,
∴∠HFG+∠DGF=90°
∴DG⊥HF,且AH∥DG,
∴AH⊥HF,且AH=HF
∴△AHF為等腰直角三角形.
(2)∵AB=3,EC=5,
∴AD=CD=3,DE=2,EF=5.
∵AD∥EF,
∴,且DE=2.
∴EM=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】駱駝被稱為“沙漠之舟”,它的體溫隨時間的變化而發(fā)生較大變化,其體溫()與時間(小時)之間的關(guān)系如圖1所示.
小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).
A.駱駝在時刻的體溫與0時體溫的絕對差(即差的絕對值)
B.駱駝從0時到時刻之間的最高體溫與當(dāng)日最低體溫的差
C.駱駝在時刻的體溫與當(dāng)日平均體溫的絕對差
D.駱駝從0時到時刻之間的體溫最大值與最小值的差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),下列結(jié)論中不正確的是( )
A.圖象必經(jīng)過點(diǎn) B.隨 的增大而增大
C.圖象在第二,四象限內(nèi)D.若,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=,E是AD邊上的一點(diǎn)(點(diǎn)E與點(diǎn)A和點(diǎn)D不重合),BE的垂直平分線交AB于點(diǎn)M,交DC于點(diǎn)N.
(1)證明:MN = BE.
(2)設(shè)AE=,四邊形ADNM的面積為S,寫出S關(guān)于的函數(shù)關(guān)系式.
(3)當(dāng)AE為何值時,四邊形ADNM的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家所在居民樓的對面有一座大廈AB=74米,為測量這座居民樓與大廈之間的水平距離CD的長度,小明從自己家的窗戶C處測得∠DCA=37°,∠DCB=48°(DC平行于地面).求小明家所在居民樓與大廈的距離CD的長度.
(參考數(shù)據(jù):sin37°,tan37°,sin48°,tan48°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=10°,點(diǎn)P在OB上.以點(diǎn)P為圓心,OP為半徑畫弧,交OA于點(diǎn)P1(點(diǎn)P1與點(diǎn)O不重合),連接PP1;再以點(diǎn)P1為圓心,OP為半徑畫弧,交OB于點(diǎn)P2(點(diǎn)P2與點(diǎn)P不重合),連接P1 P2;再以點(diǎn)P2為圓心,OP為半徑畫弧,交OA于點(diǎn)P3(點(diǎn)P3與點(diǎn)P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點(diǎn)Pn,若之后就不能再畫出符合要求點(diǎn)Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,將射線AB繞點(diǎn)A順時針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對稱,連接CN.
(1)如圖,當(dāng)0°<α<45°時:
①依題意補(bǔ)全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;
(2)當(dāng)45°<α<90°時,探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;
(3)當(dāng)0°<α<90°時,若邊AD的中點(diǎn)為F,直接寫出線段EF長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖像上,當(dāng)x1=1、x2=3時,y1=y2.
(1)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點(diǎn),b1>b2,則實(shí)數(shù)a的取值范圍是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若拋物線與x軸只有一個公共點(diǎn),求二次函數(shù)的表達(dá)式.
(3)若對于任意實(shí)數(shù)x1、x2都有y1+y2≥2,則n的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在紙片中, ,學(xué)習(xí)小組進(jìn)行如下操作:、如圖2,沿折疊使點(diǎn)落在延長線上的點(diǎn)處,點(diǎn)是.上一點(diǎn),如圖3,將圖2展平后,再沿折疊使點(diǎn)落在點(diǎn)處,點(diǎn)分別在邊和上,將圖3展平得到圖4,連接,請?jiān)趫D4中解決下列問題:
(1)判斷四邊形的形狀, 并證明你的結(jié)論;
(2)若,求四邊形的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com