如圖所示的長方體的實(shí)物,試問怎樣用合頁型折紙法來證明棱BF⊥平面ABCD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市中考數(shù)學(xué)模擬數(shù)學(xué)試卷(帶解析) 題型:解答題
西湖龍井茶名揚(yáng)中外.小葉是某龍井茶葉有限公司產(chǎn)品包裝部門的設(shè)計(jì)師.
如圖1是用矩形厚紙片(厚度不計(jì))做長方體茶葉包裝盒的示意圖,陰影部分是裁剪掉的部分.沿圖中實(shí)線折疊做成的長方體紙盒的上下底面是正方形,有三處矩形形狀的“接口”用來折疊后粘貼或封蓋.
(1)小葉用長40cm,寬34cm的矩形厚紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的2.5倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?
(2)如圖2是小葉設(shè)計(jì)出的一款茶葉包裝,它的里面是由四個圓柱體茶葉罐包裝而成的龍井茶.現(xiàn)有一張60cm×44cm的矩形厚紙片,按如圖3所示的方法設(shè)計(jì)包裝盒,用來包裝四個圓柱體茶葉罐,已知該種的茶葉罐高是底面直徑1.5倍,要求包裝盒“接口”的寬度為2cm(如有多余可裁剪),問這樣的茶葉罐底面直徑最大可以為多少?
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市中考數(shù)學(xué)模擬數(shù)學(xué)試卷(解析版) 題型:解答題
西湖龍井茶名揚(yáng)中外.小葉是某龍井茶葉有限公司產(chǎn)品包裝部門的設(shè)計(jì)師.
如圖1是用矩形厚紙片(厚度不計(jì))做長方體茶葉包裝盒的示意圖,陰影部分是裁剪掉的部分.沿圖中實(shí)線折疊做成的長方體紙盒的上下底面是正方形,有三處矩形形狀的“接口”用來折疊后粘貼或封蓋.
(1)小葉用長40cm,寬34cm的矩形厚紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的2.5倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?
(2)如圖2是小葉設(shè)計(jì)出的一款茶葉包裝,它的里面是由四個圓柱體茶葉罐包裝而成的龍井茶.現(xiàn)有一張60cm×44cm的矩形厚紙片,按如圖3所示的方法設(shè)計(jì)包裝盒,用來包裝四個圓柱體茶葉罐,已知該種的茶葉罐高是底面直徑1.5倍,要求包裝盒“接口”的寬度為2cm(如有多余可裁剪),問這樣的茶葉罐底面直徑最大可以為多少?
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年5月中考數(shù)學(xué)模擬試卷(31)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com