【題目】如圖,中,是中線,,則_____

【答案】

【解析】

CHADH,延長ADE使DE=AD=7,連接CE,作EFACF,如圖,先證明△ADB≌△EDC,得到EC=AB=10,再利用△AEF為等腰直角三角形,計算出AF=EF=,則根據(jù)勾股定理可計算出CF=,從而得到AC=,接著利用△ACH為等腰直角三角形,得到AH=CH=6,然后利用勾股定理計算出CD,從而得到BC的長.

解:作CHADH,延長ADE使DE=AD=7,連接CE,作EFACF,如圖,

AD是中線,

BD=CD,

△ADB△EDC

∴△ADB≌△EDCSAS),

EC=AB=10,

RtAEF中,∵∠DAC=45°,AE=14,

AF=EF=AE=,

Rt△CEF中,,

AC=AF-CF=,

Rt△ACH中,∵∠HAC=45°,

AH=CH=AC=6

DH=AD-AH=1,

Rt△CDH中,CD=

BC=2CD=,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一家水果店以每斤6元的價格購進某種水果若干斤,然后以每斤12元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出10斤.為保證每天至少售出360斤,水果店決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利1200元,那么水果店需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】銳角ΔABC中,BC=6,SΔABC=12,兩動點M,N分別在邊AB,AC上滑動,且MNBC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQNΔABC公共部分的面積為y(y>0)

(1)ΔABC中邊BC上高AD=______.

(2)x=______時,PQ恰好落在邊BC(如圖1).

(3)PQΔABC外部時(如圖2),求y關于x的函數(shù)關系式.(注明x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.

(1)攪勻后從中摸出1個盒子,求摸出的盒子中是型矩形紙片的概率;

(2)攪勻后先從中摸出1個盒子(不放回),再從余下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點坐標分別為A(0,1)、B(3,3)、C(1,3).

(1) 畫出ABC關于點O的中心對稱圖形A1B1C1

(2) 畫出ABC繞原點O逆時針旋轉90°A2B2C2,直接寫出點C2的坐標為______.

(3) ABC內一點P(m,n)繞原點O逆時針旋轉90°的對應點為Q,則Q的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長.

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說明理由;

(2)如果方程有兩個相等的實數(shù)根,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是( 。

A. 1一定不是關于x的方程x2+bx+a=0的根

B. 0一定不是關于x的方程x2+bx+a=0的根

C. 1和﹣1都是關于x的方程x2+bx+a=0的根

D. 1和﹣1不都是關于x的方程x2+bx+a=0的根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MON90°,等邊三角形ABC的一個頂點B是射線ON上的一定點,頂點A于點O重合,頂點C在∠MON內部

(1)當點A在射線OM上移動到A1時,連接A1B,請在∠MON內部作出以A1B為一邊的等邊三角形A1BC1(保留作圖痕跡,不寫作法);

(2)A1BOC交于點QBC的延長線與A1C1交于點D.求證:△BCQ∽△BA1D;

(3)連接CC1,試猜想∠BCC1為多少度,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,OAC中點,過點O的直線分別與ABCD交于點E,F,連接BFAC于點M,連接DE,BO.若∠COB60°,FOFC,則下列結論:FBOC,OMCM;EOB≌△CMB;MBOE32;四邊形EBFD是菱形.其中正確結論是( 。

A.①②③B.②③④C.①④D.①③④

查看答案和解析>>

同步練習冊答案