【題目】如圖,已知:⊙O的直徑AB與弦AC的夾角∠A=30°,AC=CP.
(1) 求證:CP是⊙O的切線;
(2) 若PC=6,AB=4,求圖中陰影部分的面積.
【答案】(1)見解析;(2)6-2π
【解析】試題分析:(1)、連接OC,根據(jù)∠A的度數(shù)以及AC=CP得出∠A=∠P=30°,根據(jù)OC=OA得出∠COP=60°,從而得到∠OCP的度數(shù);(2)、根據(jù)AB的長度得出OC和OB的長度,從而求出扇形OBC的面積,然后利用△PCO的面積減去扇形OBC的面積得到陰影部分的面積.
試題解析:(1)、連結(jié)OC ∵∠A=30°,AC=CP ∴∠P=∠A=30° ∵OC=OA
∴∠COP=2∠A=60° ∴∠OCP=90° ∴OC⊥PC ∴PC是⊙O的切線
(2)、∵AB=4∴OC=OB=2∴S扇OBC=2
S=S△PCO-S扇OBC=6-2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .在同一平面直線坐標系中
()若函數(shù)的圖象過點,函數(shù)的圖象過點,求, 的值.
()若函數(shù)的圖象經(jīng)過的頂點.
①求證: .
②當(dāng)時,比較, 的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將下列證明過程補充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質(zhì))
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外活動小組為了了解本校學(xué)生上網(wǎng)目的,隨機調(diào)查了本校的部分學(xué)生,根據(jù)調(diào)查結(jié)果,統(tǒng)計整理并制作了如下尚不完整的統(tǒng)計圖,根據(jù)以上信息解答下列問題:
(1)參與本次調(diào)查的學(xué)生共有_____人;
(2)在扇形統(tǒng)計圖中,m的值為_____;圓心角α=_____度.
(3)補全條形統(tǒng)計圖;
(4)中學(xué)生上網(wǎng)玩游戲、聊天交友已經(jīng)對正常的學(xué)習(xí)產(chǎn)生較多負面影響,為此學(xué)校計劃開展一次“合理上網(wǎng)”專題講座,每班隨機抽取15名學(xué)生參加,小明所在的班級有50名學(xué)生,他被抽到聽講座的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.
如:
因此,4,12,20這三個數(shù)都是神秘數(shù).
(1)28和2012這兩個數(shù)是不是神秘數(shù)?為什么?
(2)設(shè)兩個連續(xù)偶數(shù)為和(其中為非負整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù),請說明理由.
(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角坐標系中,已知A(0,a),B(b,0)C(3,c)三點,若a,b,c滿足關(guān)系式:|a﹣2|+(b﹣3)2+=0.
(1)求a,b,c的值.
(2)求四邊形AOBC的面積.
(3)是否存在點P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交車每月的支出費用為4000元,每月的乘車人數(shù)(人)與每月利潤(利潤=收入費用-支出費用)(元)的變化關(guān)系如下表所示(每位乘客的公交票價是固定不變的);
(1)在這個變化過程中, 是自變量, 是因變量;(填中文)
(2)觀察表中數(shù)據(jù)可知,每月乘客量達到 人以上時,該公交車才不會虧損;
(3)請你估計當(dāng)每月乘車人數(shù)為3500人時,每月利潤為 元?
(4)若5月份想獲得利潤5000元,則請你估計5月份的乘客量需達 人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com