1.從不同角度計算圖中邊長為c的正方形的面積,你得到了什么?發(fā)現(xiàn)了什么?與勾股定理有關(guān)嗎?試試看.
2.觀察勾股定理a2+b2=c2中的c2、a2和b2,你想到了什么?
3.利用上圖中四個完全相同的直角三角形,你還能拼出與c2有關(guān)的圖形嗎?能利用這個圖形驗證勾股定理嗎?
4.用上圖中的四個完全相同的直角三角形可以拼成如圖Ⅰ所示的圖形,這個圖形被稱為“弦圖”,最早是由三國時期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時給出的.觀察圖Ⅰ,你能驗證c2=a2+b2嗎?把你的驗證過程寫下來,并與同伴進行交流.
2002年世界數(shù)學(xué)家大會(ICM-2002)在北京召開.圖Ⅱ是此屆大會的會標,其中央圖案正是經(jīng)過藝術(shù)處理的“弦圖”.它既標志著中國古代的數(shù)學(xué)成就,又像一只轉(zhuǎn)動著的風車,歡迎來自世界各地的數(shù)學(xué)家們.
科目:初中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江寧波地八年級第一次質(zhì)量評估數(shù)學(xué)試卷(帶解析) 題型:解答題
利用“等積”計算或說理是一種很巧妙的方法, 就是一個面積從兩個不同的角度表示。如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的長。
解題思路:利用勾股定理易得AB=5利用
,可得到CD=2.4
請你利用上述方法解答下面問題:
(1) 如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的長。
(2)如圖乙,△ABC是邊長為2的等邊三角形,點D是BC邊上的
任意一點,DE⊥AB于E點,DF⊥AC于F點,求DE+DF的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江寧波地八年級第一次質(zhì)量評估數(shù)學(xué)試卷(解析版) 題型:解答題
利用“等積”計算或說理是一種很巧妙的方法, 就是一個面積從兩個不同的角度表示。如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的長。
解題思路:利用勾股定理易得AB=5利用
,可得到CD=2.4
請你利用上述方法解答下面問題:
(1) 如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的長。
(2)如圖乙,△ABC是邊長為2的等邊三角形,點D是BC邊上的
任意一點,DE⊥AB于E點,DF⊥AC于F點,求DE+DF的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com