【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動,設(shè)運動時間為x(秒),△PBQ的面只為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)求△PBQ的面積的最大值.

【答案】
(1)解:∵ = PBBQ,PB=AB﹣AP=18﹣2x,BQ=x,

∴y= x(18﹣2x),

即y= +9x(0<x≤4)


(2)解:由(1)知,y= +9x(0<x≤4),

∴y= ,

∵當(dāng)0<x≤ 時,y隨x的增大而增大,

而0<x≤4,

∴當(dāng)x=4時, =20,

即△PBQ的最大面積是20


【解析】(1)抓住已知條件中的兩點的運動方向:P在邊AB上沿AB方向,Q在邊BC上沿BC方向。先用含x的代數(shù)式表示出PB、BQ的長,根據(jù)三角形的面積公式,可求出函數(shù)解析式及自變量的取值范圍。
(2)根據(jù)(1)中的函數(shù)解析式,求出其頂點坐標(biāo),由二次函數(shù)的性質(zhì)得出當(dāng)0<x≤ 時,y隨x的增大而增大,再根據(jù)0<x≤4,可得出△PBQ的面積的最大值。
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小,以及對二次函數(shù)的最值的理解,了解如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB30,∠AOB 內(nèi)有一定點 P,且 OP12,在 OA 上有一動點 QOB 上有 一動點 R。若PQR 周長最小,則最小周長是( )

A. 6 B. 12 C. 16 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯誤的是( 。

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,直線EF切⊙O于點C, AD⊥EF于點D.

(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=4,CD=5。把三角板DCE繞著點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司共有50名員工,為慶!拔逡弧眹H勞動節(jié),公司將組織員工參加“海南雙飛五日游”活動,旅行社的收費標(biāo)準(zhǔn)是每人2500元,公司提供下列兩種方案供員工選擇參與:

方案一:要參加旅游活動者,對于2500元的旅游費,員工個人支付500元,其余2000元由公司支付;

方案二:不參加旅游者,不必交費,每人還能領(lǐng)取公司發(fā)放的500元節(jié)日費.

(1)如果公司有30人參加旅游,其余20人不參加,問公司總共需支付多少元?

(2)如果公司共支付5.5萬元,問有多少名員工參加旅游活動?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+4x+5與x軸交于點A,點B,與y軸交于點C,若D為AB的中點,則CD的長為( )
A.
B.
C.
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)與探索

你能求 x 1x2019 x2018 x2017 x 1 的值嗎?

遇到這樣的問題,我們可以先思考一下,從簡單的情形手.先分別計算下列各式的值:

x 1 x 1 x2 1 ;

x 1x2 x 1 x3 1

x 1x3 x2 x 1 x4 1 ;

由此我們可以得到:

x 1x2019 x2018 x2017 x 1 ; 請你利用上面的結(jié)論,完成下面兩題的計算:

132019 32018 32017 3 1 ;

2250 249 248 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題

(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;

(2)觀察下列一組凸多邊形實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式請你在圖1-4和圖1-5,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形

(3)小明希望構(gòu)造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形2中是他沒有完成的圖形,請用實線幫他補完整個圖形

(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標(biāo)出對稱軸

查看答案和解析>>

同步練習(xí)冊答案