已知,如圖CD是⊙O的切線,C是切點,直徑AB的延長線與CD相交于D,連接OC、BC.                  

(1)寫出三個不同類型的結(jié)論;                                                            

(2)若BD=OB,求證:CA=CD.                                                          

                                                                   


【考點】切線的性質(zhì).                                                                       

【專題】開放型.                                                                              

【分析】(1)CD是圓的切線可得出的有:OC⊥CD(切線的性質(zhì)),CD2=DBDA(切線長定理),△BCD∽△CAD(弦切角定理),AB是圓的直角可得出的有∠ACB=90°(圓周角定理)等.只要正確的都可以;                

(2)由BD=OB可知,BC是直角三角形OCD底邊上的中線,因此BC=OB=OD.因此三角形OBC就是個等邊三角形,因此∠COB=60°,也就求出了∠D=30°,然后根據(jù)等邊對等角,且外角為60°可在三角形OAC中求出∠A=30°,然后根據(jù)等角對等邊即可得出CA=CD.                                                                           

【解答】(1)解:不同類型的結(jié)論有:                                                  

△BCD∽△CAD,                                                                              

OC⊥CD,                                                                                         

△ABC是直角三角形,                                                                            

OC2+CD2=OD2,                                                                                

CD2=DBDA,                                                                                     

∠ECD=∠OCA;                                                                               

                                                                                                          

(2)證明:∵CD是圓O的切線,                                                          

∴OC⊥CD,                                                                                      

∵OB=BD,                                                                                        

∴BC是直角三角形OCD斜邊上的中線,                                                

∴BD=OB=BC=OC,                                                                           

∴△OBC是等邊三角形,                                                                        

∴∠COB=60°,                                                                                 

∴∠D=90﹣60=30°;                                                                         

∵OA=OC,                                                                                       

∴∠A=∠OCA=30°,                                                                         

∴∠A=∠D,                                                                                     

即CA=AD.                                                                                       

【點評】本題主要考查了切線的性質(zhì),圓周角定理,等邊三角形的性質(zhì)等知識點的綜合運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


一座建筑物發(fā)生了火災(zāi),消防車到達(dá)現(xiàn)場后,發(fā)現(xiàn)最多只能靠近建筑物底端5米,消防車的云梯最大升長為13米,則云梯可以達(dá)該建筑物的最大高度是(     )

A.12米 B.13米 C.14米 D.15米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


的立方根是(     )

A.8       B.4       C.2       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


點P在∠AOB的平分線上,點P到OA邊的距離等于3,點Q是OB邊上任意一點,下列關(guān)于線段PQ長度的描述正確的是(     )

A.PQ>3      B.PQ≥3       C.PQ<3      D.PQ≤3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(A點在B點左側(cè)),直線l與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.                                                                                                    

(1)求A、B兩點的坐標(biāo)及直線AC的函數(shù)表達(dá)式;                                      

(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值.                  

                                                        

                                                                                                       

                                                                                                          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在Rt△ABC中,∠A=90°,有一個銳角為60°,BC=6.若點P在直線AC上(不與點A,C重合),且∠ABP=30°,則CP的長為      .                                                                          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


江西,簡稱贛,別稱贛鄱大地,面積約166900平方公里,將近似數(shù)166900用科學(xué)記數(shù)法表示且保留三位有效數(shù)字應(yīng)為      .                                                                              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某農(nóng)場租用播種機播種小麥,在甲播種機播種2天后,又調(diào)來乙播種機參與播種,直至完成800畝的播種任務(wù),播種畝數(shù)與天數(shù)之間的函數(shù)關(guān)系如圖所示,那么乙播種機參與播種的天數(shù)是      天.                    

                                                                    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知∠1=∠2,∠3+∠4=180°,試探究AB與EF的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案