【題目】如圖,四邊形ABDC中,∠D=∠ABD=90°,點O為BD的中點,且OA平分∠BAC.
(1)求證:OC平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.

【答案】
(1)證明:過點O作OE⊥AC于E,

∵∠ABD=90゜,OA平分∠BAC,

∴OB=OE,

∵點O為BD的中點,

∴OB=OD,

∴OE=OD,

∴OC平分∠ACD


(2)證明:在Rt△ABO和Rt△AEO中,

,

∴Rt△ABO≌Rt△AEO(HL),

∴∠AOB=∠AOE,

同理求出∠COD=∠COE,

∴∠AOC=∠AOE+∠COE= ×180°=90°,

∴OA⊥OC


(3)證明:∵Rt△ABO≌Rt△AEO,

∴AB=AE,

同理可得CD=CE,

∵AC=AE+CE,

∴AB+CD=AC.


【解析】(1)過點O作OE⊥AC于E,根據(jù)角平分線上的點到角的兩邊的距離相等可得OB=OE,從而求出OE=OD,然后根據(jù)到角的兩邊距離相等的點在角的平分線上證明;(2)利用“HL”證明△ABO和△AEO全等,根據(jù)全等三角形對應(yīng)角相等可得∠AOB=∠AOE,同理求出∠COD=∠COE,然后求出∠AOC=90°,再根據(jù)垂直的定義即可證明;(3)根據(jù)全等三角形對應(yīng)邊相等可得AB=AE,CD=CE,然后證明即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】等角的補角相等的條件是________,結(jié)論是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(

A.3x4)=﹣3x+12B.(﹣3x26x2

C.3x+x23xD.x8÷x2x4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:x3n2÷xn+1=x3nxn+2 , 求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是將一正方體貨物沿坡面AB裝進汽車貨廂的平面示意圖。已知長方體貨廂的高度BC為米,tanA=,F(xiàn)把圖中的貨物繼續(xù)往前平移,當貨物頂點D與C重合時,仍可把貨物放平裝進貨廂,求BD的長。(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若收入100元記為+100元,則-500元表示______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P(3,-4),則點P( )

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個十邊形所有內(nèi)角都相等,它的每一個外角等于度.

查看答案和解析>>

同步練習冊答案