【題目】如圖,在△ABC中,AC=BC,CD是邊AB上的高線,且有2CD=3AB=6,CE=EF=DF,則下列判斷中不正確的是( )
A. ∠AFB=90 B. BE= C. △EFB∽△BFC D. ∠ACB+∠AEB=45°
【答案】D
【解析】
由于AC=BC,CD是AB邊上的高線,可知BD=1,且CD是AB的垂直平分線,利用2CD=3AB,易求CD=3,再利用垂直平分線的定理易求∠ACB=2∠BCE,∠AEB=2∠BEF,求出CE=EF=DF=1,易證△DBF是等腰直角三角形,再利用勾股定理可求BF=,可求,而夾角相等易證△EFB∽△BFC,那么有∠FBE=∠BCF,∠FEB=∠FBC,結(jié)合三角形外角的性質(zhì)易證∠ACB+∠AEB=90°.
∵AC=BC,CD是AB邊上的高線,3AB=6,
∴BD=AD=AB=1,CD是AB的垂直平分線,
又∵2CD=3AB=6,AE=BE,AF=BF,
∴CD=3,∠ACB=2∠BCE,∠AEB=2∠BEF,
∵CE=EF=DF,
∴CE=EF=DF=1,
∴DF=DB=1,
又∵∠CDB=90°,
∴BE=,選項B正確,
△DBF、△DFA是等腰直角三角形,
∴∠DFB=∠DFA=45°,BF=,
∴∠AFB=90°,選項A正確,
,,
∴,
又∵∠EFB=∠BFC,
∴△EFB∽△BFC,選項C正確,
∴∠FBE=∠BCF,∠FEB=∠FBC,
又∵∠DFB=∠FBE+∠FEB=∠FCB+∠FBC,
∴45°=∠FBE+∠FEB,
∴90°=2∠FBE+2∠FEB=2∠BCF+2∠FBC,
∴∠ACB+∠AEB=90°,選項D錯誤.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】已知線段a=0.3m,b=60cm,c=12dm.
(1)求線段a與線段b的比.
(2)如果線段a、b、c、d成比例,求線段d的長.
(3)b是a和c的比例中項嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)株洲五橋主橋主孔為拱梁鋼構(gòu)組合體系(如圖1),小明暑假旅游時,來到五橋觀光,發(fā)現(xiàn)拱梁的路面部分有均勻排列著9根支柱,他回家上網(wǎng)查到了拱梁是拋物線,其跨度為20米,拱高(中柱)10米,于是他建立如圖2的坐標系,發(fā)現(xiàn)可以將余下的8根支柱的高度都算出來了,請你求出中柱左邊第二根支柱CD的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(﹣1,0),請解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標是(﹣,).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點.
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個相似三角形,他們的周長分別是36和12.周長較大的三角形的最大邊為15,周長較小的三角形的最小邊為3,則周長較大的三角形的面積是()
A. 52 B. 54 C. 56 D. 58.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=3,ON=7,點P是直線OB上的點,要使點P,M,N構(gòu)成等腰三角形的點P有________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小澤和小超分別用擲A、B兩枚骰子的方法來確定P(x,y)的位置,她們規(guī)定:小澤擲得的點數(shù)為x,小超擲得的點數(shù)為,那么,她們各擲一次所確定的點落在已知直線y=-2x+6上的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com