精英家教網 > 初中數學 > 題目詳情
如圖,由Rt△ABC的三邊向外作正方形,若最大正方形O的邊長為13,正方形N的邊長為12,則正方形M的面積為
25
25
分析:由正方形的面積公式可知SN=AC2,SO=BC2,SM=AB2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即SN+SM=SO,由此可求SM
解答:解:∵在Rt△ABC中,AC2+AB2=BC2,
又由正方形面積公式得SN=AC2=144,SO=BC2,=169,SM=AB2,
∴SM=SO-SN=169-144=25.
故答案為:25.
點評:本題考查了勾股定理及正方形面積公式的運用,解題關鍵是明確直角三角形的邊長的平方即為相應的正方形的面積,難度一般.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、如圖,由Rt△ABC的三邊向外作正方形,若最大正方形的邊長為8cm,則正方形M與正方形N的面積之和為
64
cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,由Rt△ABC的三邊向外作正方形,若最大正方形Q的邊長為13,正方形N的邊長為12,則正方形M的面積為( 。

查看答案和解析>>

科目:初中數學 來源:2011-2012學年四川省宜賓市翠屏區(qū)八年級上期中考試數學試卷(解析版) 題型:選擇題

如圖,由Rt△ABC的三邊向外作正方形,若最大正方形Q的邊長為13,正方形N的邊長為12,則正方形M的面積為(     )

A.5             B.17           C.25           D.18

 

查看答案和解析>>

科目:初中數學 來源:2011年浙江省杭州市富陽市中考數學模擬試卷(解析版) 題型:填空題

如圖,由Rt△ABC的三邊向外作正方形,若最大正方形的邊長為8cm,則正方形M與正方形N的面積之和為    cm2

查看答案和解析>>

同步練習冊答案