【題目】2020年疫情期間,某公司為了擴(kuò)大經(jīng)營(yíng),決定購(gòu)進(jìn)6臺(tái)機(jī)器用于生產(chǎn)口罩.現(xiàn)有甲、乙兩種機(jī)器供選擇,其中每種機(jī)器的價(jià)格和每臺(tái)機(jī)器日生產(chǎn)口罩的數(shù)量如下表所示.經(jīng)過(guò)預(yù)算,本次購(gòu)買機(jī)器所耗資金不能超過(guò)36萬(wàn)元,
(1)按該公司要求可以有幾種購(gòu)買方案?
(2)如果該公司購(gòu)進(jìn)的6臺(tái)機(jī)器的日生產(chǎn)能力不能低于42萬(wàn)個(gè),那么為了節(jié)約資金應(yīng)選擇什么樣的購(gòu)買方案?
甲 | 乙 | |
價(jià)格(萬(wàn)元/臺(tái)) | 7 | 5 |
每臺(tái)日產(chǎn)量(萬(wàn)個(gè)) | 10 | 6 |
【答案】(1)有4種購(gòu)買方案①購(gòu)甲0臺(tái),購(gòu)乙6臺(tái),②購(gòu)甲1臺(tái),購(gòu)乙5臺(tái),③購(gòu)甲2臺(tái),購(gòu)乙4臺(tái)④購(gòu)甲3臺(tái),購(gòu)乙3臺(tái);(2)購(gòu)買甲種機(jī)器2臺(tái),購(gòu)買乙種機(jī)器4臺(tái)
【解析】
(1)購(gòu)甲x臺(tái),則購(gòu)乙(6-x)臺(tái),根據(jù)“本次購(gòu)買機(jī)器所耗資金不能超過(guò)36萬(wàn)元”列出一元一次不等式,即可求出x的取值范圍,從而求出結(jié)論;
(2)購(gòu)甲x臺(tái),則購(gòu)乙(6-x)臺(tái),根據(jù)“本次購(gòu)買機(jī)器所耗資金不能超過(guò)36萬(wàn)元且該公司購(gòu)進(jìn)的6臺(tái)機(jī)器的日生產(chǎn)能力不能低于42萬(wàn)個(gè)”列出一元一次不等式組,即可求出x的取值范圍,從而求出結(jié)論;
解:(1)購(gòu)甲x臺(tái),則購(gòu)乙(6-x)臺(tái)
由題意可得7x+5(6-x)≤36
解得:x≤3
所以x=0或1或2或3
當(dāng)x=0時(shí),6-x=6;
當(dāng)x=1時(shí),6-x=5;
當(dāng)x=2時(shí),6-x=4;
當(dāng)x=3時(shí),6-x=3;
答:有4種購(gòu)買方案①購(gòu)甲0臺(tái),購(gòu)乙6臺(tái),②購(gòu)甲1臺(tái),購(gòu)乙5臺(tái),③購(gòu)甲2臺(tái),購(gòu)乙4臺(tái)④購(gòu)甲3臺(tái),購(gòu)乙3臺(tái);
(2)購(gòu)甲x臺(tái),則購(gòu)乙(6-x)臺(tái)
由題意可得
解得:
∴x=2或3
當(dāng)x=2時(shí),購(gòu)買機(jī)器所耗資金為7×2+5×(6-2)=34(萬(wàn)元);
當(dāng)x=3時(shí),購(gòu)買機(jī)器所耗資金為7×3+5×(6-3)=36(萬(wàn)元)
∵34萬(wàn)元<36萬(wàn)元
∴購(gòu)甲2臺(tái),購(gòu)乙6-2=4臺(tái)所耗資金最少
答:為了節(jié)約資金應(yīng)購(gòu)買甲種機(jī)器2臺(tái),購(gòu)買乙種機(jī)器4臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:平面直角坐標(biāo)系中,A(a,3)、B(b,6)、C(c,1),a、b、c都為實(shí)數(shù),并且滿足3b-5c=-2a-18,4b-c=3a+10
(1) 請(qǐng)直接用含a的代數(shù)式表示b和c
(2) 當(dāng)實(shí)數(shù)a變化時(shí),判斷△ABC的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍
(3) 當(dāng)實(shí)數(shù)a變化時(shí),若線段AB與y軸相交,線段OB與線段AC交于點(diǎn)P,且S△PAB>S△PBC,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)請(qǐng)判斷AB與CD的位置關(guān)系,并說(shuō)明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD.當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問(wèn)∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?并說(shuō)明理由;
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外),∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?直接寫出結(jié)論,其數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有依次排列的三個(gè)數(shù):“,,”對(duì)這三個(gè)數(shù)作如下操作:對(duì)任何相鄰的兩個(gè)數(shù),都用左邊的數(shù)減去右邊的數(shù),將所得之差寫在這兩個(gè)數(shù)之間,即可產(chǎn)生一個(gè)新數(shù)串:“2,7,-5,-13,8”稱為第一次操作;做第二次同樣的操作后又產(chǎn)生一個(gè)新數(shù)串:“2,-5,7,12,-5,8,-13,-21,8”……依次繼續(xù)操作下去,直到第次操作后停止操作.則第次操作所得新數(shù)串中所有各數(shù)的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在數(shù)軸上點(diǎn)A,點(diǎn)B對(duì)應(yīng)的數(shù)分別是6,﹣6,∠DCE=90°(點(diǎn)C與點(diǎn)O重合,點(diǎn)D在數(shù)軸的正半軸上)
(1)如圖1,若CF平分∠ACE,則∠AOF= 度;點(diǎn)A與點(diǎn)B的距離=
(2)如圖2,將∠DCE沿?cái)?shù)軸的正半軸向右平移t(0<t<3)個(gè)單位后,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCF=α.
①當(dāng)t=1時(shí),α= ;點(diǎn)B與點(diǎn)C的距離=
②猜想∠BCE和α的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖3,開(kāi)始∠D1C1E1與∠DCE重合,將∠DCE沿?cái)?shù)軸的正半軸向右平移t(0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCF=α,與此同時(shí),將∠D1C1E1沿?cái)?shù)軸的負(fù)半軸向左平移t(0t3)個(gè)單位,再繞點(diǎn)頂點(diǎn)C1順時(shí)針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α與β滿足|α﹣β|=20°,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線l分別交AB、CD與E、F兩點(diǎn),且AB∥CD.
(1) 說(shuō)明:∠1=∠2;
(2) 如圖2,點(diǎn)M、N在AB、CD之間,且在直線l左側(cè),若∠EMN+∠FNM=260°,
①求:∠AEM+∠CFN的度數(shù);
②如圖3,若EP平分∠AEM,FP平分∠CFN,求∠P的度數(shù);
(3) 如圖4,∠2=80°,點(diǎn)G在射線EB上,點(diǎn)H在AB上方的直線l上,點(diǎn)Q是平面內(nèi)一點(diǎn),連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫出∠GQH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com