【題目】在Rt△ABC中,D為斜邊AB的中點,∠B=60°,BC=2cm,動點E從點A出發(fā)沿AB向點B運動,動點F從點D出發(fā),沿折線D﹣C﹣B運動,兩點的速度均為1cm/s,到達終點均停止運動,設(shè)AE的長為x,△AEF的面積為y,則y與x的圖象大致為( 。
A. B.
C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個動點,過點C作CE⊥BD,交BD的延長線于點E,如圖①.
(1)求證:ADCD=BDDE;
(2)若BD是邊AC的中線,如圖②,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b(a≠0)與雙曲線(k≠0)交于一、三象限內(nèi)的A,B兩點與x軸交于點C,點A的坐標為(2,m),點B的坐標為(1,n),cos∠AOC=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)點Q為y軸上一點,△ABQ是以AB為直角邊的直角三角形,求點Q的坐標;
(3)點P(s,t)(s>2)在直線AB上運動,PM∥x軸交雙曲線于M,PN∥y軸交雙曲線于N,直線MN分別交x軸,y軸于E,D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于B,C兩點,與y軸交于點A,直線y=﹣x+2經(jīng)過A,C兩點,拋物線的對稱軸與x軸交于點D,直線MN與對稱軸交于點G,與拋物線交于M,N兩點(點N在對稱軸右側(cè)),且MN∥x軸,MN=7.
(1)求此拋物線的解析式.
(2)求點N的坐標.
(3)過點A的直線與拋物線交于點F,當(dāng)tan∠FAC=時,求點F的坐標.
(4)過點D作直線AC的垂線,交AC于點H,交y軸于點K,連接CN,△AHK沿射線AC以每秒1個單位長度的速度移動,移動過程中△AHK與四邊形DGNC產(chǎn)生重疊,設(shè)重疊面積為S,移動時間為t(0≤t≤),請直接寫出S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點A(﹣1,0),E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,求四邊形AEDB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com