【題目】已知:拋物線x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,其中點(diǎn)B在點(diǎn)A的右側(cè),且AB7

1)如圖1,求拋物線的解析式;

2)如圖2,點(diǎn)D在第一象限內(nèi)拋物線上,連接CD,ADADy軸于點(diǎn)E.設(shè)點(diǎn)D的橫坐標(biāo)為d,CDE的面積為S,求Sd之間的函數(shù)關(guān)系式(不要求寫出自變量d的取值范圍);

3)如圖3,在(2)的條件下,過點(diǎn)DDHCE于點(diǎn)H,點(diǎn)PDH上,連接CP,若∠OCP2DAB,且HECP35,求點(diǎn)D的坐標(biāo)及相應(yīng)S的值.

【答案】1;(2;(3D(43),8

【解析】

1)先求出點(diǎn)AB的坐標(biāo),結(jié)合AB的長,即可得到答案;

2)過點(diǎn)DDKx軸于點(diǎn)K,過點(diǎn)DDHCE于點(diǎn)H,設(shè)∠DABα,易得,進(jìn)而求出CE的長,即可求解;

3)過點(diǎn)ECE的垂線,過C作∠OCP的平分線交DE于點(diǎn)J,交CE的垂線于點(diǎn)F,過點(diǎn)FED的平行線交HD的延長線于點(diǎn)N,連接CN.易得∠ECF=∠DAB=HDE=∠PCF=α,設(shè)HE3k,CP5k,先證△CFN為等腰三角形,再證PCPN5k,由勾股定理得(d3k2+d2k2=(5k2,可得,結(jié)合,即可求解.

1)∵,令y0,則(x+2)(xm)=0,解得:

A(﹣20),B(m0),

AB7,

m﹣(﹣2)=7,m5,

;

2)過點(diǎn)DDKx軸于點(diǎn)K,過點(diǎn)DDHCE于點(diǎn)H,設(shè)∠DABα,

∵點(diǎn)D在第一象限內(nèi)拋物線上,點(diǎn)D的橫坐標(biāo)為d,

,

,

C(05),

EOAOtanα5dCE5﹣(5d)=d,

;

3)過點(diǎn)ECE的垂線,過C作∠OCP的平分線交DE于點(diǎn)J,交CE的垂線于點(diǎn)F,過點(diǎn)FED的平行線交HD的延長線于點(diǎn)N,連接CN

EFCE,DHCE,

EFDHAB,

∵設(shè)∠DABα,∠OCP2DAB,CF平分∠OCP,

∴∠ECF=∠DAB=HDE=∠PCF=α,

HECP35

∴設(shè)HE3k,CP5k

由(2)可知:CEHDd,

又∵∠CEF=∠CHD90°,

∴△CEF≌△DHEASA),

EFHE,CFDE,

EFDN,NFDE

∴四邊形EDNF為平行四邊形,

EFHEDN3kCFDEFN,∠DNF=∠DEF=α

∴△CFN為等腰三角形,

∴∠FCN=∠FNC,

∴∠PCN=∠FCN-α=FNC-α=PNC

PCPN5k,

PD2k,

CHd3kPHd2k,

∴(d3k2+d2k2=(5k2

∴(d6k)(d+k)=0,

d6k,

∴在RtDHE中,

由(2)知,

d4,

D(4,3),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)

34.8

32

29.6

28

售價x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,拋物線x軸交于,兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).

求拋物線解析式及點(diǎn)D的坐標(biāo);

若直線l過點(diǎn)D,P為直線l上的動點(diǎn),當(dāng)以A、B、P為頂點(diǎn)所作的直角三角形有且只有三個時,求直線l的解析式;

如圖2,EOB的中點(diǎn),將線段OE繞點(diǎn)O順時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接,當(dāng)取得最小值時,求直線與拋物線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,某校九年級學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計(jì)圖(如圖),根據(jù)圖表中的信息解答下列問題:

(1)求全班學(xué)生人數(shù)和m的值.

(2)直接出該班學(xué)生的中考體育成績的中位數(shù)落在哪個分?jǐn)?shù)段.

(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級進(jìn)行經(jīng)驗(yàn)交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.

分組

分?jǐn)?shù)段(分)

頻數(shù)

A

36x41

2

B

41x46

5

C

46x51

15

D

51x56

m

E

56x61

10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,ABBC34,點(diǎn)E是對角線BD上一動點(diǎn)(不與點(diǎn)BD重合),將矩形沿過點(diǎn)E的直線MN折疊,使得點(diǎn)A,B的對應(yīng)點(diǎn)G,F分別在直線ADBC上,當(dāng)△DEF為直角三角形時,CNBN的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷-種進(jìn)價為每千克50元的水產(chǎn)品,據(jù)市場分析,每千克售價為60元時,月銷售量為,銷售單價每漲1元時,月銷售量就減少,針對這種情況,請解答以下問題:

1)當(dāng)銷售單價定為65元時,計(jì)算銷售量和月銷售利潤;

2)若想在月銷售成本不超過12000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線相交于兩點(diǎn),的直徑,上一點(diǎn),于點(diǎn),連結(jié),且平分.

(1)求證:的切線;

(2),,求的半徑;

(3)如圖2,在(2)的條件下,點(diǎn)上一動點(diǎn),連接,,,問:線段,,之間存在什么數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,MNBD上兩點(diǎn),BMDN,連接AMMC,CN,NA,添加一個條件,使四邊形AMCN是菱形,這個條件是( )

A.OMACB.MBMO

C.BDACD.AMB=∠CND

查看答案和解析>>

同步練習(xí)冊答案