【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)D作BC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:ABCP=BDCD;
(3)當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)PC=.
【解析】
(1)連接OD,證明OD⊥PD即可.
(2)先判斷出∠BAD=∠PDC,再判斷出∠ABD=∠PCD,即可得出結(jié)論;
(3)利用勾股定理求出BC,BD,CD,再利用(2)中結(jié)論即可解決問(wèn)題.
(1)證明:連接OD.
∵∠BAD=∠CAD,
∴,
∴∠BOD=∠COD=90°,
∵BC∥PA,
∴∠ODP=∠BOD=90°,
∴OD⊥PA,
∴PD是⊙O的切線.
(2)證明:∵BC∥PD,
∴∠PDC=∠BCD.
∵∠BCD=∠BAD,
∴∠BAD=∠PDC,
∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,
∴∠ABD=∠PCD,
∴△BAD∽△CDP,
∴,
∴ABCP=BDCD.
(3)解:∵BC是直徑,
∴∠BAC=∠BDC=90°,
∵AB=5,AC=12,
∴BC==13,
∴BD=CD=,
∵ABCP=BDCD.
∴PC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AC=n+1(其中n為正整數(shù)),點(diǎn)B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當(dāng)AB=1時(shí),△AME的面積記為S1;當(dāng)AB=2時(shí),△AME的面積記為S2;當(dāng)AB=3時(shí),△AME的面積記為
S3;則S3﹣S2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AB=,AC=2,過(guò)點(diǎn)B作直線m∥AC,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A′B′C(點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為A',B′),射線CA′,CB′分別交直線m于點(diǎn)P,Q.
(1)如圖1,當(dāng)P與A′重合時(shí),求∠ACA′的度數(shù);
(2)如圖2,設(shè)A′B′與BC的交點(diǎn)為M,當(dāng)M為A′B′的中點(diǎn)時(shí),求線段PQ的長(zhǎng);
(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)P,Q分別在CA′,CB′的延長(zhǎng)線上時(shí),試探究四邊形PA'B′Q的面積是否存在最小值.若存在,求出四邊形PA′B′Q的最小面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) A,B,C,D 依次在同一條直線上,點(diǎn) E,F 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=∠D,AE=DF.
(1)求證:四邊形 BFCE 是平行四邊形.
(2)若 AD=10,EC=3,∠EBD=60°,當(dāng)四邊形 BFCE是菱形時(shí),求 AB 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線交x軸于A、B兩點(diǎn)在B的左邊,交y軸于C,直線經(jīng)過(guò)B、C兩點(diǎn).
求拋物線的解析式;
為直線BC下方的拋物線上一點(diǎn),軸交BC于D點(diǎn),過(guò)D作于E點(diǎn)設(shè),求m的最大值及此時(shí)P點(diǎn)坐標(biāo);
探究是否存在第一象限的拋物線上一點(diǎn)M,以及y軸正半軸上一點(diǎn)N,使得,且若存在,求出M、N兩點(diǎn)坐標(biāo);否則,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-4x-m2=0
(1)求證:該方程有兩個(gè)不等的實(shí)根;
(2)若該方程的兩實(shí)根x1、x2滿足x1+2x2=9,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(1,0)和點(diǎn)(0,3).
(1)求此拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)當(dāng)自變量x滿足﹣1≤x≤3時(shí),求函數(shù)值y的取值范圍;
(3)將此拋物線沿x軸平移m個(gè)單位后,當(dāng)自變量x滿足1≤x≤5時(shí),y的最小值為5,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題發(fā)現(xiàn):
()如圖①,中,,,,點(diǎn)是邊上任意一點(diǎn),則的最小值為__________.
()如圖②,矩形中,,,點(diǎn)、點(diǎn)分別在、上,求的最小值.
()如圖③,矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是邊上的任意一點(diǎn),把沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接、,四邊形的面積是否存在最小值,若存在,求這個(gè)最小值及此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:AD是△ABC的高,且BD=CD.
(1)如圖1,求證:∠BAD=∠CAD;
(2)如圖2,點(diǎn)E在AD上,連接BE,將△ABE沿BE折疊得到△A′BE,A′B與AC相交于點(diǎn)F,若BE=BC,求∠BFC的大小;
(3)如圖3,在(2)的條件下,連接EF,過(guò)點(diǎn)C作CG⊥EF,交EF的延長(zhǎng)線于點(diǎn)G,若BF=10,EG=6,求線段CF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com