當(dāng)公式(a+b)(a-b)=a2-b2中的a、b代表多項(xiàng)式時(shí),可以將多項(xiàng)式看作一個(gè)整體,然后運(yùn)用公式(a+b)(a-b)=a2-b2進(jìn)行計(jì)算.

(a+b-c+d)(a-b+c+d)=[(________)+(________)][(________)-(________)]=(________)2-(________)2

答案:a+d,b-c,a+d,b-c,a+d,b-c
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
在平面直角坐標(biāo)系中,已知x軸上兩點(diǎn)A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點(diǎn),我們可以通過構(gòu)造直角三角形來求AB間距離.
如圖,過A,B分別向x軸,y軸作垂線AM1、AN1和BM2、BN2,垂足分別是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直線AN1交BM2于Q點(diǎn),在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意兩點(diǎn)[A(x1,y1),B(x2,y2)]間距離公式為:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式計(jì)算,點(diǎn)A(1,-3),B(-2,1)之間的距離為
5
5
;
(2)平面直角坐標(biāo)系中的兩點(diǎn)A(1,3)、B(4,1),P為x軸上任一點(diǎn),當(dāng)PA+PB最小時(shí),直接寫出點(diǎn)P的坐標(biāo)為
13
4
,0)
13
4
,0)
,PA+PB的最小值為
5
5
;
(3)應(yīng)用平面內(nèi)兩點(diǎn)間距離公式,求代數(shù)式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

仔細(xì)閱讀以下內(nèi)容解決問題:
偏微分方程,對于多個(gè)變量的求最值問題相當(dāng)有用,以2001年全國聯(lián)賽第二試第一題為例給同學(xué)們作一介紹,問題建立數(shù)學(xué)模型后實(shí)際上是求:
y=5a2+6ab+3b2-30a-20b+46的最小值,先介紹求導(dǎo)公式,(xn)′=nxn-1,a′=0(a為常數(shù)),當(dāng)ya′=10a+6b-30=0,yb′=6a+6b-20=0時(shí),可取得最小值(ya′的意思是關(guān)于a求導(dǎo),把b看作常數(shù),(5a2)′=10a,(6ab)′=6b,(3a2-20b+46)′=0).解方程,得a=
5
2
,b=
5
6
,代入可得y=
1
6
,即是最小值.
同學(xué)們:以上內(nèi)容很有挑戰(zhàn)性,確保讀懂后請解答下面問題:運(yùn)用閱讀材料中的知識求s=4x2+2y2+4xy-12x-8y+17的最小值
7
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•江門模擬)如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+4x+5的圖象交x軸于點(diǎn)A、B,交y軸于點(diǎn)C,頂點(diǎn)為P,點(diǎn)M是x軸上的動點(diǎn).
(1)求MA+MB的最小值;
(2)求MP-MC的最大值;
(3)當(dāng)M在x軸的正半軸(不包含坐標(biāo)原點(diǎn))上運(yùn)動時(shí),以CP、CM為鄰邊作平行四邊形PCMD.PCMD能否為矩形?若能,求M點(diǎn)的坐標(biāo);若不能,簡要說明理由.
(參考公式:二次函數(shù)y=ax2+bx+c圖象的頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)物體所受到的壓強(qiáng)P與所受壓力F及受力面積S之間的計(jì)算公式為P=
F
S
.當(dāng)一個(gè)物體所受壓力F=5時(shí),該物體所受壓強(qiáng)P與受力面積S之間的關(guān)系用圖象表示大致為( 。

查看答案和解析>>

同步練習(xí)冊答案