【題目】已知:邊長為2的正方形OABC在平面直角坐標(biāo)系中位于x軸上方,OAx軸的正半軸的夾角為60°,則B點(diǎn)的坐標(biāo)為_____.

【答案】

【解析】

根據(jù)“OA與x軸的正半軸的夾角為60°”可知OA與y軸正半軸的夾角為30°,根據(jù)正方形的邊長為2,和三角函數(shù)值可將A點(diǎn)和C點(diǎn)坐標(biāo)直接求出,將點(diǎn)B坐標(biāo)設(shè)出,根據(jù)B到A和C和O的距離,列出方程組即可求出答案。

解:過點(diǎn)A作AM⊥y軸于點(diǎn)M

∵OA與x軸的正半軸的夾角為60°

∴OA與y軸正半軸的夾角為30°,OA=OC=2

∴AM=2xsin30°=1,OM=2xcos30°=

故點(diǎn)A的坐標(biāo)為(1,

過點(diǎn)C作CN⊥x軸于點(diǎn)N

∵OC與x軸的夾角為30°

∴CN=2xsin30°=1,ON=2xcos30°=

故點(diǎn)C的坐標(biāo)為(

設(shè)點(diǎn)B坐標(biāo)為(a,b)

過B作BE⊥x軸,交x軸于點(diǎn)E,過C作CD⊥BE,交BE于點(diǎn)D

∵OB=,BD=b-1,CD=

解得

∴點(diǎn)B的坐標(biāo)為(

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,點(diǎn)M、N把線段AB分割成AM、MNBN,若以AM、MN、BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M、N是線段AB的勾股點(diǎn).

(1)已知點(diǎn)M、N是線段AB的勾股點(diǎn),若AM=1,MN=2,求BN的長;

(2)如圖2,點(diǎn)P(a,b)是反比例函數(shù)y=(x0)上的動(dòng)點(diǎn),直線y=﹣x+2與坐標(biāo)軸分別交于A、B兩點(diǎn),過點(diǎn)P分別向x、y軸作垂線,垂足為C、D,且交線段ABE、F.證明:E、F是線段AB的勾股點(diǎn);

(3)如圖3,已知一次函數(shù)y=﹣x+3與坐標(biāo)軸交于A、B兩點(diǎn),與二次函數(shù)y=x2﹣4x+m交于C、D兩點(diǎn),若C、D是線段AB的勾股點(diǎn),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(2,3),B(1,1),C(4,2)

(1)連接A、B、C三點(diǎn),請?jiān)谌鐖D中作出△ABC關(guān)于x軸對稱的圖形△ABC’并直接寫出各對稱點(diǎn)的坐標(biāo);(2)求△ABC的面積;(3)若Mxy)是△ABC內(nèi)部任意一點(diǎn),請直接寫出點(diǎn)M在△ABC’內(nèi)部的對應(yīng)點(diǎn)M1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年我市體育中考總分60分,其中男生1000米跑為必選項(xiàng)目,再在立定跳遠(yuǎn)、跳繩、實(shí)心球擲遠(yuǎn)、籃球運(yùn)球和足球運(yùn)球中選擇兩項(xiàng);女生800米跑為必選項(xiàng)目,再在立定跳遠(yuǎn)、跳繩、仰臥起坐、籃球運(yùn)球和足球運(yùn)球中選擇兩項(xiàng)某校對得分超過40分的20位學(xué)生的成績m進(jìn)行統(tǒng)計(jì),結(jié)果如頻數(shù)分布表所示:

a的值;

若用扇形圖來描述,求分?jǐn)?shù)在內(nèi)所對應(yīng)的扇形圖的圓心角的大。

若男生小明在剛開始訓(xùn)練時(shí)在選考項(xiàng)目隨機(jī)選擇兩項(xiàng)進(jìn)行訓(xùn)練,試用列舉法求小明選擇跳繩籃球運(yùn)球的概率提示:可以用字母表示各個(gè)項(xiàng)目

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(下稱乙方案)進(jìn)行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進(jìn)行一次性治理(當(dāng)年完工),從當(dāng)年開始,所治理的每家工廠一年降低的Q值都以平均值n計(jì)算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計(jì)算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個(gè)相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計(jì)降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形, 點(diǎn)GBC上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.

(1) 求證:DEBF = EF

(2) 當(dāng)點(diǎn)GBC邊中點(diǎn)時(shí), 試探究線段EFGF之間的數(shù)量關(guān)系, 并說明理由.

(3) 若點(diǎn)GCB延長線上一點(diǎn),其余條件不變.請畫出圖形,寫出此時(shí)DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.

下面有三個(gè)推斷:

①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)釘尖向上的概率是0.618;

③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( )

A. 7 B. 8 C. 7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC是邊長為3的等邊三角形,BC為底邊作一個(gè)頂角為120等腰BDC.點(diǎn)M、點(diǎn)N分別是AB邊與AC邊上的點(diǎn),并且滿足∠MDN=60

1)如圖1,當(dāng)點(diǎn)DABC外部時(shí),求證:BM+CN=MN;

2)當(dāng)點(diǎn)DABC內(nèi)部時(shí),其它條件不變,請?jiān)趫D2中補(bǔ)全圖形,并直接寫出AMN的周長.

查看答案和解析>>

同步練習(xí)冊答案