【題目】在直角坐標(biāo)系中,過(guò)原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC,連接OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連接DE,作DF⊥DE,交OA于點(diǎn)F,連接EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).
(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過(guò)程中,的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出的值.
(3)連接AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.
【答案】(1)(2)不變,(3)t=或
【解析】
(1)當(dāng)t=3時(shí),點(diǎn)E為AB的中點(diǎn),由三角形中位線定理得出DE∥OA,DE=OA=4,再由矩形的性質(zhì)證出DE⊥AB,得出∠OAB=∠DEA=90°,證出四邊形DFAE是矩形,得出DF=AE=3即可;
(2)作DM⊥OA于M,DN⊥AB于N,證明四邊形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行線得出比例式,,由三角形中位線定理得出DM=AB=3,DN=OA=4,證明△DMF∽△DNE,得出的值;
(3)作作DM⊥OA于M,DN⊥AB于N,若AD將△DEF的面積分成1:2的兩部分,設(shè)AD交EF于點(diǎn)G,則點(diǎn)G為EF的三等分點(diǎn);
①當(dāng)點(diǎn)E到達(dá)中點(diǎn)之前時(shí),NE=3-t,由△DMF∽△DNE得:MF=(3-t),求出AF=4+MF=,得出G(,),求出直線AD的解析式為y=,把G(,)代入即可求出t的值;
②當(dāng)點(diǎn)E越過(guò)中點(diǎn)之后,NE=t-3,由△DMF∽△DNE得:MF=,求出AF=4-MF=,得出G(,),代入直線AD的解析式y=求出t的值即可.
解:(1)當(dāng)t=3時(shí),點(diǎn)E為AB的中點(diǎn),
∵A(8,0),C(0,6),
∴OA=8,OC=6,
∵點(diǎn)D為OB的中點(diǎn),
∴DE∥OA,DE=OA=4,
∵四邊形OABC是矩形,
∴OA⊥AB,
∴DE⊥AB,
∴∠OAB=∠DEA=90°,
又∵DF⊥DE,
∴∠EDF=90°,
∴四邊形DFAE是矩形,
∴DF=AE=3;
(2)的大小不變;
理由:如圖2所示:作DM⊥OA于M,DN⊥AB于N,
∵四邊形OABC是矩形,
∴OA⊥AB,
∴四邊形DMAN是矩形,
∴∠MDN=90°,DM∥AB,DN∥OA,
∴,,
∵點(diǎn)D為OB的中點(diǎn),
∴M、N分別是OA、AB的中點(diǎn),
∴DM=AB=3,DN=OA=4,
∵∠EDF=90°,
∴∠FDM=∠EDN,
又∵∠DMF=∠DNE=90°,
∴△DMF∽△DNE,
∴.
(3)作DM⊥OA于M,DN⊥AB于N,
若AD將△DEF的面積分成1:2的兩部分,
設(shè)AD交EF于點(diǎn)G,則點(diǎn)G為EF的三等分點(diǎn);
①當(dāng)點(diǎn)E到達(dá)中點(diǎn)之前時(shí),如圖3所示,NE=3-t,
由△DMF∽△DNE得:MF=,
∴,
∵點(diǎn)G為EF的三等分點(diǎn),
∴G(,),
設(shè)直線AD的解析式為y=kx+b,
把A(8,0),D(4,3)代入得:,
解得:,
∴直線AD的解析式為:,
把點(diǎn)G(,)代入得:;
②當(dāng)點(diǎn)E越過(guò)中點(diǎn)之后,如圖4所示,NE=t-3,
由△DMF∽△DNE得:MF=,
∴,
∵點(diǎn)G為EF的三等分點(diǎn),
∴G(,),
把點(diǎn)G代入直線AD的解析式,
解得:;
綜合上述,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(a,0)是x軸正半軸上一點(diǎn),PA⊥x軸,點(diǎn)B坐標(biāo)為(0,b)(b>0),動(dòng)點(diǎn)M在y軸正半軸上B點(diǎn)上方的點(diǎn),動(dòng)點(diǎn)N在射線AP上,過(guò)點(diǎn)B作AB的垂線,交射線AP于點(diǎn)D,交直線MN于點(diǎn)Q,連結(jié)AQ,取AQ的中點(diǎn)為C.
(1)若a=2b,點(diǎn)D坐標(biāo)為(m,n),求的值;
(2)當(dāng)點(diǎn)Q在線段BD上時(shí),若四邊形BQNC是菱形,面積為,求經(jīng)過(guò)點(diǎn)B,Q兩點(diǎn)的直線解析式;
(3)當(dāng)點(diǎn)Q在射線BD上時(shí),且a3,b1,若以點(diǎn)B,C,N,Q為頂點(diǎn)的四邊形是平行四邊形,求這個(gè)平行四邊形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)均為1,已知格點(diǎn)△ABC的頂點(diǎn)A、C的坐標(biāo)分別是(﹣2,0),(﹣3,3).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系.
(2)以點(diǎn)(﹣1,2)為位似中心,相似比為2,將△ABC放大為原來(lái)的2倍,得到△A1B1C1,畫(huà)出△A1B1C1,使它與△ABC在位似中心的異側(cè),并寫(xiě)出B1點(diǎn)坐標(biāo)為 .
(3)線段BC與線段B1C1的關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)O在AB上,⊙O經(jīng)過(guò)A、D兩點(diǎn),交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)到直線的距離即為點(diǎn)到直線的垂線段的長(zhǎng).
(1)如圖1,取點(diǎn)M(1,0),則點(diǎn)M到直線l:y=x﹣1的距離為多少?
(2)如圖2,點(diǎn)P是反比例函數(shù)y=在第一象限上的一個(gè)點(diǎn),過(guò)點(diǎn)P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問(wèn)是否存在點(diǎn)P,使d0=?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點(diǎn)A、B(A在B的左邊).且∠AOB=90°,求點(diǎn)P(2,0)到直線y=kx+m的距離最大時(shí),直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.
(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)(a,b為常數(shù),且)與反比例函數(shù)(m為常數(shù),且)的圖象交于點(diǎn)A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫(xiě)出當(dāng)時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足,則稱點(diǎn)P為⊙O的“隨心點(diǎn)”.
(1)當(dāng)⊙O的半徑r=2時(shí),A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點(diǎn)”是 ;
(2)若點(diǎn)E(4,3)是⊙O的“隨心點(diǎn)”,求⊙O的半徑r的取值范圍;
(3)當(dāng)⊙O的半徑r=2時(shí),直線y=- x+b(b≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O的“隨心點(diǎn)”,直接寫(xiě)出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(﹣1,0)、B(3,0)兩點(diǎn),且交y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過(guò)M作MN∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng);
(3)在(2)的條件下,連接NB,NC,是否存在點(diǎn)M,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com