【題目】如圖,在平面直角坐標系中,點C(﹣3,0),點A,B分別在x軸,y軸的正半軸上,且滿足 +|OA﹣1|=0
(1)求點A,點B的坐標.
(2)若點P從C點出發(fā),以每秒1個單位的速度沿射線CB運動,連結(jié)AP.設(shè)△ABP的面積為S,點P的運動時間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點P,使以點A,B,P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
【答案】
(1)解:∵ +|OA﹣1|=0
∴OA﹣1=0、OB2﹣3=0,
∴OA=1、OB= ,
∴點A的坐標為(1,0)、B的坐標(0, )
(2)解:∵C(﹣3,0),B(0, );
∴OC=3,OB=
在RT△BOC中,BC= =2 ,
設(shè)點A到直線CB的距離為y,則
×2 y= ×(3+1)× ,
解得y=2.
則S= ×|2 ﹣t|×2=|2 ﹣t|.
故S與t的函數(shù)關(guān)系式為:S=﹣t+2 (0≤t≤2 )或S=t﹣2 (t>2 ).
(3)解:存在,
理由:∵tan∠OBC= = = ,
∴∠OBC=60°,
∴∠BCO=30°,
∴BC=2OB=2 ,
∵tan∠OBA= = = ,
∴∠OBA=30°,
∴∠ABC=90°,AB=2OA=2,
①當0≤t≤2 時,若△PBA∽△AOB時,則 = ,
即 = ,
∴PB= ,
∴PBsin60°= × =1,PBcos60°= × = ,
∴P(﹣1, );
若△ABP∽△AOB時,則 = ,
即 = ,
∴PB=2 ,
∴PBsin60°=2 × =3,PBcos60°=2 × = ,
∴P(﹣3,0),
②當t>2 時,若△PBA∽△AOB時,則 = ,
即 = ,
∴PB= ,
∴PBsin60°= × =1,PBcos60°= × = ,
∴P(1, );
若△ABP∽△AOB時,則 = ,
即 = ,
∴PB=2 ,
∴PBsin60°=2 × =3,PBcos60°=2 × = ,
∴P(3,2 ),
所以,存在點P,使以點A,B,P為頂點的三角形與△AOB相似,P點的坐標為(﹣1, )或(﹣3,0)或(1, )或(3,2 ).
【解析】(1)根據(jù)非負數(shù)的和為0,每個數(shù)均為0,得到OA、OB的長,即可求出答案;(2)根據(jù)勾股定理得到CB的長度,再根據(jù)三角形面積公式即可得到點A到直線CB的距離;再根據(jù)△ABP的面積=BPAB,用t的代數(shù)式表示BP即| ﹣t|,即可得到S與t的函數(shù)關(guān)系式由于是射線CB,可分為P在線段CB上和在CB延長線上兩種情況;(3)先求得∠ABC=90°,然后分兩種情況討論:①當0≤t≤ ②當t>, 利用對應(yīng)邊成比例列出方程,再運用三角函數(shù),即可求得點P的坐標.
【考點精析】關(guān)于本題考查的三角形的面積和勾股定理的概念,需要了解三角形的面積=1/2×底×高;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中.
(1)若把△ABC向上平移2個單位,再向左平移1個單位得到△A1B1C1,畫出△A1B1C1,并寫出點A1,B1,C1的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為AB上一點,作CD⊥AB交⊙O于D,連接AD,將△ACD沿AD翻折至△AC′D.
(1)請你判斷C′D與⊙O的位置關(guān)系,并說明理由;
(2)過點B作BB′⊥C′D′于B′,交⊙O于E,若CD= ,AC=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B,C三名大學生競選系學生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進行了統(tǒng)計,如表和圖一:
A | B | C | |
筆試 | 85 | 95 | 90 |
口試 | 80 | 85 |
(1)請將表一和圖一中的空缺部分補充完整.
(2)競選的最后一個程序是由本系的300名學生進行投票,三位候選人的得票情況如圖二(沒有棄權(quán)票,每名學生只能推薦一個),請計算每人的得票數(shù).
(3)若每票計1分,系里將筆試、口試、得票三項測試得分按4:3:3的比例確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當選.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,E是對角線AC上一點,F(xiàn)是線段BC延長線上一點,且CF=AE,連接BE、EF.
(1)若E是線段AC的中點,如圖1,易證:BE=EF(不需證明);
(2)若E是線段AC或AC延長線上的任意一點,其它條件不變,如圖2、圖3,線段BE、EF有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的二次函數(shù) 的圖象中,觀察得出了下面五條信息:
① ;② ;③ ;④ ;⑤ ,
你認為其中正確信息的個數(shù)有個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與 軸交于 、 兩點(點 在點 的左側(cè)),點 的坐標為 ,與 軸交于點 ,作直線 .動點 在 軸上運動,過點 作 軸,交拋物線于點 ,交直線 于點 ,設(shè)點 的橫坐標為 .
(Ⅰ)求拋物線的解析式和直線 的解析式;
(Ⅱ)當點 在線段 上運動時,求線段 的最大值;
(Ⅲ)當以 、 、 、 為頂點的四邊形是平行四邊形時,直接寫出 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1,2,3,4,另外有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個小球,所摸球上的數(shù)字大于2的概率為;
(2)小龍和小東想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認為游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD⊥AB于D,點F是BC上任意一點,FE⊥AB于E,且∠1=∠2.求證:∠3=∠ACB.
下面給出了部分證明過程和理由,請補全所有內(nèi)容.
證明:∵CD⊥AB,FE⊥AB
∴∠BDC=∠BEF=90°( )
∴EF∥DC( )
∴∠2= ( )
又∵∠2=∠1(已知)
∴∠1= (等量代換)
∴DG∥BC( )
∴∠3=∠ACB(兩直線平行,同位角相等)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com