精英家教網 > 初中數學 > 題目詳情
如圖,F、C是線段AD上的兩點,AB∥DE,BC∥EF,AF=DC,連接AE、BD,求證:四邊形ABDE是平行四邊形.

【答案】分析:要證明四邊形ABDE是平行四邊形,已經有AB∥DE,再只要證明AB=DE就可以了,而證明AB=DE可以通過證明△ABC≌△DEF,根據題目已知條件容易證明△ABC≌△DEF,這樣就可以解決題目問題.
解答:證明:∵AF=DC,
∴AF+FC=DC+FC.
∴AC=DF.
∵AB∥DE,
∴∠BAC=∠EDF.
∵BC∥EF,
∴∠ACB=∠EFD.
∴△ABC≌△DEF.
∴AB=DE而AB∥DE.
∴四邊形ABDE是平行四邊形.
點評:此題主要利用全等三角形的性質與判定得到線段相等,然后利用相等線段根據平行四邊形的判定證明題目的結論.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知B是線段AC上的一點,M是線段AB的中點,N是線段AC的中點,P為NA的中點,Q是AM的中點,則MN:PQ等于( 。
精英家教網
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

11、如圖,C、D是線段AB上兩點,已知圖中所有線段的長度都是正整數,且總和為29,則線段AB的長度是
9或8

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,點C是線段AB上一動點,分別以線段AC、CB為邊,在線段AB的同側作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,連接AF、BD.
(1)猜想線段AF與線段BD的數量關系和位置關系(不用證明).
(2)當點C在線段AB上方時,其它條件不變,如圖2,(1)中的結論是否成立?說明你的理由.
(3)在圖1的條件下,探究:當點C在線段AB上運動到什么位置時,直線AF垂直平分線段BD?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•石景山區(qū)一模)如圖,△ABC中,∠ACB=90°,AC=2,以AC為邊向右側作等邊三角形ACD.
(1)如圖1,將線段AB繞點A逆時針旋轉60°,得到線段AB1,聯結DB1,則與DB1長度相等的線段為
BC
BC
 (直接寫出結論);
(2)如圖2,若P是線段BC上任意一點(不與點C重合),點P繞點A逆時針旋轉60°得到點Q,求∠ADQ的度數;
(3)畫圖并探究:若P是直線BC上任意一點(不與點C重合),點P繞點A逆時針旋轉60°得到點Q,是否存在點P,使得以A、C、Q、D、為頂點的四邊形是梯形,若存在,請指出點P的位置,并求出PC的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,C,D是線段AB上兩點,若CB=4cm,DB=7cm,且D是AC的中點,則AC=
6cm
6cm

查看答案和解析>>

同步練習冊答案