如圖,在等腰梯形ABCD中,AB∥CD,對角線AC⊥BD于P點,點A在y軸上,點C、D在x軸上.
(1)若BC=10,A(0,8),求點D的坐標;
(2)若BC=13
2
,AB+CD=34,求過B點的反比例函數(shù)的解析式;
(3)如圖,在PD上有一點Q,連接CQ,過P作PE⊥CQ交CQ于S,交DC于E,在DC上取EF=DE,過F作FH⊥CQ交CQ于T,交PC于H,當Q在PD上運動時,(不與P、D重合),
PQ
PH
的值是否發(fā)生變化?若變化,求出變化范圍;若不變,求出其值.
精英家教網(wǎng)精英家教網(wǎng)
分析:(1)根據(jù)等腰三角形的性質知:AD=BC,在Rt△AOD中,已知AD,OA的長,可將OD的長求出,從而可知點D的坐標;
(2)作輔助線,作BH⊥DE于H,過B點作BE∥AC交x軸于點E,則四邊形ABEC為平行四邊形,AB=CE,BE=AC,由AC⊥BD,可得:BD⊥BE,故在Rt△BDE中,由斜邊DE的長可知:BH的長,在Rt△BHC中,運用勾股定理可將CH的長求出,進而可將OH的長求出,知點B的坐標,從而可求出求過B點的反比例函數(shù)的解析式;
(3)作輔助線,過點D作DN∥PC交PE的延長線于點M,交HF的延長線于點N,過點M作MI∥EF交BN于點I,易證四邊形EFIM和四邊形MNHP是平行四邊形,從而可證:△EDM≌△IMN,DM=MN,進而可證:△PDM≌△CPQ,DM=PQ=PH,故:
PQ
PH
=1,為定值.
解答:解:(1)在等腰梯形ABCD中,AD=BC=10
又∵A(0,8)
∴OA=8
∴OD=
102-82
=6精英家教網(wǎng)
∴D(-6,0)

(2)作BH⊥DE于H,過B點作BE∥AC交x軸于點E,
∵AB∥CE,BE∥AC,
∴ABEC是平行四邊形,
∴AB=CE,BE=AC,
又∵ABCD為等腰梯形,
∴AC=BD,
∴BE=BD,
而AC⊥BD,AB∥CE,
∴∠DPC=∠DBE=90°,
∵BH⊥DE,
∴H為DE的中點,即BH為直角三角形DBE斜邊DE上的中線,
∴BH=
1
2
DE=
1
2
(DC+CE)=
1
2
(DC+AB)=
1
2
×34=17
∵BC=13
2

∴CH=
BC2-BH2
=7
∴OH=AB=CE=HE-HC=17-7=10
∴B(10,17)
∴過B點的反比例函數(shù)的解析式為:
y=
170
x


(3)過點D作DN∥PC交PE的延長線于點M,交HF的延長線于點N,過點M作MI∥EF交BN于點I精英家教網(wǎng)
易證四邊形EFIM和四邊形MNHP是平行四邊形
∴MI=EF=DE,MN=PH
又∵∠EDM=∠IMN,∠DEM=∠EFI=∠MIN
∴△EDM≌△IMN
∴DM=MN
∵AC⊥BD,DN∥PC,
∴∠PDM=∠CPQ=90°,∠DPM=∠QCP=90°-∠SPC
由(2)知:∠BDC=45°,而∠DPC=90°,
∴PD=PC
∴△PDM≌△CPQ
∴DM=PQ=PH
PQ
PH
=1
點評:本題綜合考查等腰梯形的性質,反比例函數(shù)關系式的求法,全等三角形的判定和勾股定理等知識點的綜合應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設P、Q同時出發(fā)并運動了t秒.
(1)當PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側部分的面積為S.

  

(1)分別求出當點Q位于AB、BC上時,S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(2)的條件下,設線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習冊答案