在如圖的方格中,每個小正方形的邊長都為1,△ABC的頂點均在格點上.在建立平面直角坐標系后,點B的坐標為(-1,2).
(1)把△ABC向下平移8個單位后得到對應的△A1B1C1,畫出△A1B1C1,并寫出A1坐標是______.
(2)以原點O為對稱中心,畫出與△ABC關于原點O對稱的△A2B2C2,并寫出B2坐標是______.
(1)△A1B1C1如圖所示,A1(-5,-6);
(2)△A2B2C2如圖所示,B2(1,-2).
故答案為:(-5,-6);(1,-2).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3).
探究:設△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用兩個全等的等邊△ABC和△ACD拼成如圖的菱形ABCD.現(xiàn)把一個含60°角的三角板與這個菱形疊合,使三角板的60°角的頂點與點A重合,兩邊分別與AB、AC重合.將三角板繞點A逆時針方向旋轉.
(1)當三角板的兩邊分別與菱形的兩邊BC、CD相交于點E、F時(圖a),
①猜想BE與CF的數(shù)量關系是______;
②證明你猜想的結論.
(2)當三角板的兩邊分別與菱形的兩邊BC、CD的延長線相交于點E、F時(圖b),連接EF,判斷△AEF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,E、F分別是正方形ABCD的邊BC、CD上的點,BE=CF,連接AE、BF.將△ABE繞正方形的中心按逆時針方向旋轉到△BCF,旋轉角為α(0°<α<180°),則∠α=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,P是正方形內任意一點,連接PA、PB,將△PAB繞點B順時針旋轉至△P′CB處.
(1)猜想△PBP′的形狀,并說明理由;
(2)若PP′=2
2
cm,求S△PBP′

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC的頂點坐標分別為A(1,1),B(7,2),C(3,4).
(1)將△ABC平移后得到△A1B1C1,已知點A平移到點A1(-5,-2).畫出△A1B1C1,并寫出B1,C1兩點的坐標;
(2)將B1,C1兩點繞點A1按逆時針方向旋轉90°,分別得到點B2,C2.畫出△A1B2C2,并寫出B2,C2兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉,由圖形①得到圖形②的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的
5
16
?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將圖形a繞圖形外一點O按逆時針方向旋轉90°得到圖形b,則對應線段AO與A′O之間的夾角為______.

查看答案和解析>>

同步練習冊答案