【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(9,0)和C(0,4).CD垂直于y軸,交拋物線于點(diǎn)D,DE垂直與x軸,垂足為E,l是拋物線的對(duì)稱軸,點(diǎn)F是拋物線的頂點(diǎn).

(1)求出二次函數(shù)的表達(dá)式以及點(diǎn)D的坐標(biāo);

(2)若RtAOC沿x軸向右平移到其直角邊OC與對(duì)稱軸l重合,再沿對(duì)稱軸l向上平移到點(diǎn)C與點(diǎn)F重合,得到RtA1O1F,求此時(shí)RtA1O1F與矩形OCDE重疊部分的圖形的面積;

(3)若RtAOC沿x軸向右平移t個(gè)單位長度(0<t≤6)得到RtA2O2C2,RtA2O2C2與RtOED重疊部分的圖形面積記為S,求St之間的函數(shù)表達(dá)式,并寫出自變量t的取值范圍.

【答案】1D6,4);y=﹣x2+x+4;(2;(3)當(dāng)0t≤3時(shí),S=t2,當(dāng)3t≤6時(shí),S=t2﹣3t+12

【解析】試題分析:(1)用待定系數(shù)法求拋物線解析式;(2)由GH∥A1O1,求出GH=1,再求出FH,S重疊部分=SA1O1F﹣SFGH計(jì)算即可;(3)分兩種情況直接用面積公式計(jì)算,用面積差求出即可.

試題解析:(1拋物線y=ax2+bx+c經(jīng)過點(diǎn)A﹣3,0),B9,0)和C04).

設(shè)拋物線的解析式為y=ax+3)(x﹣9), ∵C04)在拋物線上, ∴4=﹣27a

∴a=﹣, 設(shè)拋物線的解析式為y=﹣x+3)(x﹣9=﹣x2+x+4,

∵CD垂直于y軸,C0,4∴﹣x2+x+4=4∴x=6, ∵D64),

2)如圖1, 點(diǎn)F是拋物線y=﹣x2+x+4的頂點(diǎn),∴F3,), ∴FH=,

∵GH∥A1O1, , , ∴GH=1,

∵Rt△A1O1F與矩形OCDE重疊部分是梯形A1O1HG,

∴S重疊部分=SA1O1F﹣SFGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=

3當(dāng)0t≤3時(shí),如圖2, ∵C2O2∥DE, , ∴O2G=t,

∴S=SOO2G=OO2×O2G=t=t2,

當(dāng)3t≤6時(shí),如圖3∵C2H∥OC, , ∴C2H=6﹣t),

∴S=S四邊形A2O2HG=SA2O2C2﹣SC2GH=OA×OC﹣C2t﹣3=×3×4﹣×6﹣t)(t﹣3=t2﹣3t+12

當(dāng)0t≤3時(shí),S=t2,當(dāng)3t≤6時(shí),S=t2﹣3t+12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程2(x-1)-a=0的解是3,則a的值為(  ).

A. 4 B. ﹣4 C. 5 D. ﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=6,AB=5,則AE的長為( 。

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABC的直角邊AB為直徑作O,交斜邊AC于點(diǎn)D,點(diǎn)E為OB的中點(diǎn),連接CE并延長交O于點(diǎn)F,點(diǎn)F恰好落在弧AB的中點(diǎn),連接AF并延長與CB的延長線相交于點(diǎn)G,連接OF.

(1)求證:OF=BG;

(2)若AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣(x﹣1)2+k上有點(diǎn)(﹣1,y1)、(0,y2)、(2,y3),那么有(
A.y1<y2=y3
B.y1=y3<y2
C.y1=y3>y2
D.y1>y2=y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫出證明過程,若不成立,請(qǐng)說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】飛機(jī)著陸后滑行的距離s(米)關(guān)于滑行的時(shí)間t(秒)的函數(shù)解析式是s=60t﹣15t2 . 則飛機(jī)著陸后滑行到停下來滑行的距離為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“十一五”期間,中國減少二氧化碳排放1 460 000 000噸,贏得國際社會(huì)廣泛贊譽(yù).將1 460 000 000用科學(xué)記數(shù)法表示為(
A.146×107
B.1.46×107
C.1.46×109
D.1.46×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,平行于x軸的直線與拋物線y=ax(a>0)相交于A、B兩點(diǎn).設(shè)點(diǎn)B的橫坐標(biāo)為m(m>0).

(1)求AB的長(用含m的代數(shù)式表示).

(2)如圖②,點(diǎn)C在直線AB上,點(diǎn)C的橫坐標(biāo)為2m.若a=1,m=2,求頂點(diǎn)在x軸上且經(jīng)過B、C兩點(diǎn)的拋物線的頂點(diǎn)坐標(biāo).

(3)點(diǎn)D在直線AB上,BD=2AB,過O、B、D三點(diǎn)的拋物線的頂點(diǎn)為P,其對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a1.

①求的值.

②當(dāng)m=2,△BPD為等腰直角三角形,直接寫出a的值.

查看答案和解析>>

同步練習(xí)冊答案