(2003•黑龍江)已知:如圖,直角坐標系內的梯形AOBC,AC∥OB,AC、OB的長分別是關于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=S梯形AOBC?若存在,請直接寫出M點的坐標;若不存在,說明理由.

【答案】分析:(1)根據(jù)等高三角形的面積等于底邊比,可得出AC:OB=1:5.而AC、OB又是方程x2-6mx+m2+4=0的兩根,可根據(jù)韋達定理得出AC、OB的和與積的值,然后聯(lián)立AC、OB的比例關系式可求出AC、OB的長;
(2)本題要通過相似三角形求解.如果BC⊥OC,那么∠AOC和∠OBC就同為∠COB的余角,因此兩角相等,可得出△OBC∽△COA,根據(jù)相似三角形得出的OC2=AC•OB,可求出OC的長.進而可在直角三角形OAC中,求出OA的長,已知了AC的長,也就得出了C點的坐標.可用待定系數(shù)法求出OC所在直線的解析式;
(3)先求出矩形FDEO的面積S與OE的長a的函數(shù)關系式,易知直線BC的解析式為y=-x+,那么DE=-a+,因此S=OE•DE=-a2+a,易求得梯形AOBC的面積為6,因此S=-a2+a=3,解得a=2或3,當a=2時,DE=-×2+=,即M點縱坐標為,代入直線OC的解析式中可得M(,-),同理可求得當a=3時,M(,1).
解答:解:(1)∵S△AOC:S△BOC=1:5
∴AC:OB=1:5
不妨設AC=k,OB=5k
由題意得
解得(不合題意,舍去)
∴AC=1,OB=5;

(2)∵∠OAC=∠BCO=90°,∠ACO=∠BOC
∴△OBC∽△COA
,OC2=OB•AC
∴OC=或OC=-(舍去)
∵AC=1,∴AO=2
∴C(1,2)
∴直線OC的解析式為y=2x;

(3)存在,M(,)或(,1).
點評:本題考查的是一次函數(shù)的綜合運用以及三角形,梯形的性質,難度中等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標系內的梯形AOBC,AC∥OB,AC、OB的長分別是關于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=S梯形AOBC?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年中考數(shù)學預考題(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點的橫坐標為1,則a+c的值為   

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖南省岳陽市岳化一中高一新生數(shù)學綜合能力測試(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點的橫坐標為1,則a+c的值為   

查看答案和解析>>

科目:初中數(shù)學 來源:2003年黑龍江省中考數(shù)學試卷(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點的橫坐標為1,則a+c的值為   

查看答案和解析>>

同步練習冊答案