已知四邊形ABCD是邊長(zhǎng)為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當(dāng)PA的長(zhǎng)度等于 時(shí),∠PAB=60°;當(dāng)PA的長(zhǎng)度等于 時(shí),△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角坐標(biāo)系(點(diǎn)A即為原點(diǎn)O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐標(biāo)為(a,b),試求2 S1 S3-S22的最大值,并求出此時(shí)a,b的值.
(1)2,或;(2)當(dāng)a=2時(shí),b=2,2S1S3-S22有最大值是16.
【解析】
試題分析:(1)因?yàn)橛墒侵睆剑傻谩螦PB=90°,要使∠PAB=60,即要∠PBA=30 ,即PA=PB=2,當(dāng)PA=PD、PD=DA時(shí),△PAD是等腰三角形,作輔助線DOAP交PA于G,然后由正方形的性質(zhì)、勾股定理易知△PAD△DGA,從而用對(duì)應(yīng)邊的相似比可得.
(2)要求2S1 S3-S22的最大值,只要先把S1、S2、S3用a,b表示,再根據(jù)得到關(guān)系式,從而利用二次函數(shù)最大值概念求得.
試題解析:(1)若∠PAB=60°,需∠PBA=30°,
∵AB是直徑,
∴∠APB=90°,
則在Rt△PAB中,PA=AB=2,
∴當(dāng)PA的長(zhǎng)度等于2時(shí),∠PAB=60°;
①若△PAD是等腰三角形,當(dāng)PA=PD時(shí),如圖1,
此時(shí)P位于正方形ABCD的中心O.
則PD⊥PA,PD=PA,
∴AD2=PD2+PA2=2PA2=16,
∴PA=2
②當(dāng)PD=DA時(shí),以點(diǎn)D為圓心,DA為半徑作圓與弧AB的交點(diǎn)為點(diǎn)P.如圖2
連PD,令A(yù)B中點(diǎn)為O,再連DO,PO,DO交AP于點(diǎn)G,則△ADO≌△PDO,
∴DO⊥AP,AG=PG,
∴AP=2AG,
又∵DA=2AO,
∴AG=2OG,
設(shè)AG為2x,OG為x,
∴(2x)2+x2=4,
∴x=
∴AG=2x=,AP=
∴當(dāng)PA的長(zhǎng)度等于2或時(shí),△PAD是等腰三角形.
(2)如圖,過(guò)點(diǎn)P分別作PE⊥AB,PF⊥AD,垂足分別為E、F,延長(zhǎng)EP交BC于點(diǎn)G,則PG⊥BC.
∵P點(diǎn)坐標(biāo)為(a,b),
∴PE=b,PF=a,PG=4-a
在△PAD、△PAB和△PBC中,
∵AB為直徑
∴∠APB=90°
∴,即
∴
∴當(dāng)a=2時(shí),b=2,2S1S3-S22有最大值是16.
考點(diǎn): 圓的綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com