(2013•河池)如圖,⊙O的弦AB垂直半徑OC于點(diǎn)D,∠CBA=30°,OC=3
3
cm,則弦AB的長(zhǎng)為(  )
分析:根據(jù)圓周角定理求出∠AOD,求出∠OAD,根據(jù)含30度角的直角三角形性質(zhì)和勾股定理求出AD、OD,根據(jù)垂徑定理即可求出AB.
解答:解:∵∠CBA=30°,
∴∠AOC=2∠CBA=60°,
∵AB⊥OC,
∴∠ADO=90°,
∴∠OAD=30°,
∴OD=
1
2
OA=
1
2
×3
3
=
3
2
3
(cm),
由勾股定理得:AD=
OA2-OD2
=4.5cm,
∵AB⊥OC,OC過O,
∴AB=2AD=9(cm),
故選A.
點(diǎn)評(píng):本題考查了垂徑定理,含30度角的直角三角形性質(zhì),圓周角定理,勾股定理的應(yīng)用,主要考查學(xué)生的推理和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河池)如圖,正方形ABCD的邊長(zhǎng)為4,E、F分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),且AE⊥EF.則AF的最小值是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河池)如圖,直線a∥b,直線c與a、b相交,∠1=70°,則∠2的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河池)如圖所示的幾何體,其主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河池)如圖(1),已知兩個(gè)全等三角形的直角頂點(diǎn)及一條直角邊重合.將△ACB繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)到△A′CB′的位置,其中A′C交直線AD于點(diǎn)E,A′B′分別交直線AD、AC于點(diǎn)F、G,則在圖(2)中,全等三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河池)如圖,AB為⊙O的直徑,C為⊙O外一點(diǎn),過點(diǎn)C作的⊙O切線,切點(diǎn)為B,連結(jié)AC交⊙O于D,∠C=38°.點(diǎn)E在AB右側(cè)的半圓上運(yùn)動(dòng)(不與A、B重合),則∠AED的大小是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案