12.已知,ABC中,AC=BC,∠ACB=90°,D為AB的中點(diǎn),若E在直線AC上任意一點(diǎn),DF⊥DE,交直線BC于F點(diǎn),G為EF的中點(diǎn),延長(zhǎng)CG與AB交于點(diǎn)H.
(1)若E在邊AC上.①試說明DE=DF;②試說明CG=GH;
(2)若AE=6,CH=10,求邊AC的長(zhǎng).

分析 (1)①連接CD,由直角三角形斜邊上的中線性質(zhì)得出CD=AD=BD,CD⊥AB,證出∠EDA=∠CDF,由ASA證明△ADE≌△CDF,即可得出結(jié)論;
②連接CD、DG,由直角三角形斜邊上的中線性質(zhì)得出CG=EG=FG,DG=EG=FG,得出CG=DG,因此∠GCD=∠GDC,由角的互余關(guān)系得出∠GHD=∠HDG,證出GH=GD,即可得出結(jié)論;
(2)分兩種情況:①當(dāng)E在線段AC上時(shí),CG=GH=EG=GF,得出CH=EF=10,由(1)得出AE=CF=6,由勾股定理得出CE,即可得出結(jié)論;
②當(dāng)E在線段CA延長(zhǎng)線上時(shí),AC=EC-AE=8-6=2;即可得出結(jié)果.

解答 (1)①證明:連接CD,如圖1所示:
∵∠ACB=90°,AC=BC,D為AB的中點(diǎn),
∴CD=AD=BD,CD⊥AB,∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,
∵DF⊥DE,
∴∠EDF=∠EDC+∠CDF=90°,
∴∠EDA=∠CDF,
在△ADE和△CDF中,$\left\{\begin{array}{l}{∠DCF=∠DAE}\\{CD=AD}\\{∠CDF=∠ADE}\end{array}\right.$,
∴△ADE≌△CDF(ASA),
∴DE=DF;
②證明:連接DG,如圖2所示:
∵∠ACB=90°,G為EF的中點(diǎn),
∴CG=EG=FG,
∵∠EDF=90°,G為EF的中點(diǎn),
∴DG=EG=FG,
∴CG=DG,
∴∠GCD=∠GDC,
∵CD⊥AB,
∴∠CDH=90°,
∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,
∴∠GHD=∠HDG,
∴GH=GD,
∴CG=GH;
(2)解:分兩種情況:
①當(dāng)E在線段AC上時(shí),CG=GH=EG=GF,
∴CH=EF=10,
由(1)①知:△ADE≌△CDF,
∴AE=CF=6,
在Rt△ECF中,由勾股定理得:
CE=$\sqrt{E{F}^{2}-C{F}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∴AC=AE+EC=6+8=14;
②當(dāng)E在線段CA延長(zhǎng)線上時(shí),如圖3所示:
AC=EC-AE=8-6=2,
綜上所述,AC=14或2.

點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、直角三角形斜邊上的中線性質(zhì)、勾股定理、等腰三角形的判定等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.57°55′-32°46′=25°9′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知一次函數(shù)y=kx+2與y=x-1的圖象相交,交點(diǎn)的橫坐標(biāo)為2.
(1)求k的值;
(2)直接寫出二元一次方程組$\left\{\begin{array}{l}{y=kx+2}\\{y=x-1}\end{array}\right.$的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.解方程x4-7x2+12=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè)x2=y,則原方程可變?yōu)閥2-7y+12=0①,解得y1=3,y2=4.
當(dāng)y=3時(shí),x2=3,∴x=±$\sqrt{3}$;
當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=$\sqrt{3}$,x2=-$\sqrt{3}$,x3=2,x4=-2.
(1)在由原方程得到方程①的過程中,利用換元法達(dá)到降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想.
(2)利用上述方法解方程:(x2+x)2+(x2+x)-6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.我市今年參加中考的學(xué)生人數(shù)大約為3.75×104人,這個(gè)用科學(xué)記數(shù)法表示的近似數(shù)精確到百位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AD為△ABC的中線,BE為三角形ABD中線.
(1)在△BED中作BD邊上的高EF;
(2)若△ABC的面積為40,BD=5,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,如圖,矩形ABCD中,AB=6cm,BC=8cm,點(diǎn)F為BC邊上的一點(diǎn),將△ABF沿AF翻折得△AEF,且點(diǎn)E恰好在對(duì)角線AC上.以EF、EC為邊做平行四邊形EFGC,并將其沿線段CA以每秒1cm的速度運(yùn)動(dòng),記運(yùn)動(dòng)中的平行四邊形為E′F′G′C′,運(yùn)動(dòng)時(shí)間為t,當(dāng)點(diǎn)C′到點(diǎn)A時(shí)停止運(yùn)動(dòng).
(1)tan∠BAF=$\frac{1}{2}$,S矩形EFGC=12cm2;(直接填空)
(2)記運(yùn)動(dòng)過程中平行四邊形E′F′G′C′與△AFC的重疊部分為S,求出S與t之間的函數(shù)關(guān)系式以及對(duì)應(yīng)的t的取值范圍;
(3)設(shè)運(yùn)動(dòng)過程中線段AF與E′F′交與點(diǎn)H,AH=x,是否存在這樣的x,使得△HFC′為直角三角形?若有,直接寫出x的值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,等腰△ABC中,AB=AC.
(1)如圖,若點(diǎn)S為△ABC外一點(diǎn),∠ABC=α,∠ASC+∠ABC=180°,求∠BSC(用含α表示);
(2)若點(diǎn)M為直線BC上的一點(diǎn),點(diǎn)M到△ABC的兩腰的距離為9和3,則△ABC一腰上的高為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列計(jì)算正確的是(  )
A.$\frac{{2}^{2}}{3}$=$\frac{4}{9}$B.(-4)2=-16C.(-3)3=-9D.-32=-9

查看答案和解析>>

同步練習(xí)冊(cè)答案