已知:如圖,過正方形ABCD的頂點B作直線BE平行于對角線AC,AE=AC(E,C均在AB的同側).
求證:∠CAE=2∠BAE.

證明:過A作AG⊥BE于G,連結BD交AC于點O,
∵ABCD是正方形,
∴AGBO是正方形,
∴AG=AO=AC=AE,
∴∠AEG=30°,
∵BE∥AC,
∴∠CAE=∠AEG=30°.
∴∠BAE=45°-30°=15°.
∴∠CAE=2∠BAE.
分析:先過A作AG⊥BE于G,連結BD交AC于點O,得出AGBO是正方形,AG=AO=AC=AE,再根據(jù)在直角三角形中,30°所對的直角邊等于斜邊的一半,求出∠AEG=30°,根據(jù)BE∥AC,求出∠CAE=∠AEG=30°,即可求出∠BAE的度數(shù),從而證出∠CAE=2∠BAE.
點評:此題考查了正方形的性質,解答本題要充分利用正方形的特殊性質,對角線互相垂直平分且相等,在直角三角形中,30°所對的直角邊等于斜邊的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、已知:如圖,過正方形ABCD的頂點A作一條直線,分別交BD、CD、BC的延長線于E、F、G.求證:
(1)∠DAF=∠DCE;
(2)CE與△CGF的外接圓⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•大興區(qū)一模)已知:如圖,過正方形ABCD的頂點B作直線BE平行于對角線AC,AE=AC(E,C均在AB的同側).
求證:∠CAE=2∠BAE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,過正方形ABCD的頂點A作一條直線,分別交BD、CD、BC的延長線于E、F、G.求證:
(1)∠DAF=∠DCE;
(2)CE與△CGF的外接圓⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年上海市松江區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

已知:如圖,過正方形ABCD的頂點A作一條直線,分別交BD、CD、BC的延長線于E、F、G.求證:
(1)∠DAF=∠DCE;
(2)CE與△CGF的外接圓⊙O相切.

查看答案和解析>>

同步練習冊答案