精英家教網(wǎng)如圖,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于點(diǎn)E,CD平分∠ACB且分別與AB、AE交于點(diǎn)D、F,求∠AFC的度數(shù).
分析:先根據(jù)垂直的定義求∠BAE的度數(shù),再結(jié)合圖形根據(jù)角的和差求出∠CAE的度數(shù),利用三角形的內(nèi)角和求∠ACB,因CD平分∠ACB,所以可得∠ACD,最后利用△AFC的內(nèi)角和為180°,求得∠AFC的度數(shù).
解答:解:∵AE⊥BC,∴∠AEB=90°.
∵∠B=60°,
∴∠BAE=90°-60°=30°.
∴∠CAE=50°-30°=20°
∵∠BAC+∠B+∠ACB=180°,
∴∠ACB=180°-∠BAC-∠B=70°.
又∵CD平分∠ACB,
∴∠ACD=
1
2
∠ACB=35°.
∴∠AFC=180°-35°-20°=125°.
點(diǎn)評(píng):此類問題解法不唯一,也可以根據(jù)三角形外角的性質(zhì)求∠AFC的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案