方程數(shù)學(xué)公式的解為


  1. A.
    x1=4,x2=1
  2. B.
    數(shù)學(xué)公式
  3. C.
    x=4
  4. D.
    x1=4,x2=-1
C
分析:把等號(hào)左邊的第一項(xiàng)分母分解因式后,觀察發(fā)現(xiàn)原分式方程的最簡(jiǎn)公分母為x(x+1),方程兩邊乘以最簡(jiǎn)公分母,將分式方程轉(zhuǎn)化為整式方程求解.
解答:原方程可化為:
方程兩邊都乘以x(x+1)得:
x+4+2x(x+1)=3x2,即x2-3x-4=0,
即(x-4)(x+1)=0,
解得:x=4或x=-1,
檢驗(yàn):把x=4代入x(x+1)=4×5=20≠0;把x=-1代入x(x+1)=-1×0=0,
∴原分式方程的解為x=4.
故選C.
點(diǎn)評(píng):(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解;(2)解分式方程一定注意要驗(yàn)根.學(xué)生要認(rèn)識(shí)到分式方程驗(yàn)根的原因是在方程兩邊乘以最簡(jiǎn)公分母轉(zhuǎn)化為整式方程后,整式方程與分式方程不一定是同解方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知方程:x2+3x-4=0,則方程的解為:
x1=-4,x2=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面解題過(guò)程,然后解答問(wèn)題:
解方程:x4-x2-6=0
解:設(shè)y=x2,則原方程可化為y2-y-6=0,解得:y1=3,y2=-2
當(dāng)y=3時(shí),x2=3,?∴x=±
3

當(dāng)y=-2時(shí),x2=-2,原方程無(wú)實(shí)數(shù)根.
∴原方程的解為:x1=
3
, x2=-
3

這種解方程的方法叫“換元法”.
仔細(xì)體會(huì)這種方法的過(guò)程步驟,然后按照上述步驟解下列方程:
x+1
x
-
2x
x+1
=1

解:設(shè)y=
x
x+1
,則原方程可化為關(guān)于y的方程:
 

解得:y1=
????
.
, y2=
????
.
?

請(qǐng)你將后面的過(guò)程補(bǔ)充完整:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、解方程(x-1)2-5(x-1)+4=0時(shí),我們可以將x-1看成一個(gè)整體,設(shè)x-1=y,則原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時(shí),即x-1=1,解得x=2;當(dāng)y=4時(shí),即x-1=4,解得x=5,所以原方程的解為:x1=2,x2=5.則利用這種方法求得方程 (2x+5)2-4(2x+5)+3=0的解為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:
為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個(gè)整體,設(shè)x2-1=y,則原方程可化為y2-5y+4=0,解得y1=1,y2=4.
當(dāng)y1=1時(shí),x2-1=1,∴x=±
2
;當(dāng)y2=4時(shí),x2-1=4,∴x=±
5

因此原方程的解為:x1=
2
,x2=-
2
,x3=
5
,x4=-
5

(1)已知方程
1
x2-2x
=x2-2x-3
,如果設(shè)x2-2x=y,那么原方程可化為
 
(寫成關(guān)于y的一元二次方程的一般形式).
(2)根據(jù)閱讀材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面材料:
為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個(gè)整體,然后設(shè)x2-1=y,則(x2-1)2=y2,原方程化為y2-5y+4=0.①
解得y1=1,y2=4.
當(dāng)y1=1時(shí),x2-1=1,所以x2=2,所以x=±
2
;
當(dāng)y2=4時(shí),x2-1=4,所以x2=5,所以x=±
5

所以原方程的解為:x1=
2
,x2=-
2
,x3=
5
,x4=-
5

(1)在由原方程得到方程①的過(guò)程中,利用
換元
換元
法達(dá)到了降次的目的,體現(xiàn)了
轉(zhuǎn)化
轉(zhuǎn)化
的數(shù)學(xué)思想;
(2)解方程:x4-3x2-4=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案