(2005•天水)如圖,正六邊形ABCDEF的邊長是a,分別以C、F為圓心,a為半徑畫弧,則圖中陰影部分的面積是( )

A.
B.
C.
D.
【答案】分析:由圖可知:陰影部分的面積=6個邊長為a的全等等邊三角形的面積的和(即正六邊形的面積)-兩個半徑為a、圓心角為120度的全等扇形的面積.邊長為a的等邊三角形的面積=a2,半徑為a的圓心角為120度的扇形的面積=πa2,因此陰影部分的面積=(-)a2
解答:解:S陰影=S正六邊形-S扇形FEA-S扇形CDB=S正六邊形-2S扇形FEA=6×a2-2×=(-)a2
故選C.
點評:本題利用了正六邊形的性質(zhì),等邊三角形的面積公式和扇形的面積公式求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•天水)如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點,∠ACB=90°,交y軸負半軸于C點,點B在點A的右側(cè),且
(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點P,使得△PAB的面積為2?如果有,這樣的點有幾個?寫出它們的坐標;如果沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年甘肅省天水市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•天水)如圖所示,己知點P是x軸上一點,以P為圓心的⊙P分別與x軸、y軸交于點A、B和C、D,其中A(-3,0),B(1,0).過點C作⊙P的切線交x軸于點E.
(1)求直線CE的解析式;
(2)求過A、B、C三點的拋物線解析式;
(3)第(2)問中的拋物線的頂點是否在直線CE上,請說明理由;
(4)點F是線段CE上一動點,點F的橫坐標為m,問m在什么范圍內(nèi)時,直線FB與⊙P相交?

查看答案和解析>>

科目:初中數(shù)學 來源:2005年甘肅省天水市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•天水)如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點,∠ACB=90°,交y軸負半軸于C點,點B在點A的右側(cè),且
(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點P,使得△PAB的面積為2?如果有,這樣的點有幾個?寫出它們的坐標;如果沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年甘肅省隴南市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•天水)如圖所示,己知點P是x軸上一點,以P為圓心的⊙P分別與x軸、y軸交于點A、B和C、D,其中A(-3,0),B(1,0).過點C作⊙P的切線交x軸于點E.
(1)求直線CE的解析式;
(2)求過A、B、C三點的拋物線解析式;
(3)第(2)問中的拋物線的頂點是否在直線CE上,請說明理由;
(4)點F是線段CE上一動點,點F的橫坐標為m,問m在什么范圍內(nèi)時,直線FB與⊙P相交?

查看答案和解析>>

科目:初中數(shù)學 來源:2005年甘肅省隴南市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•天水)如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點,∠ACB=90°,交y軸負半軸于C點,點B在點A的右側(cè),且
(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點P,使得△PAB的面積為2?如果有,這樣的點有幾個?寫出它們的坐標;如果沒有,說明理由.

查看答案和解析>>

同步練習冊答案