已知: 關于x的一元一次方程kx=x+2 ①的根為正實數,二次函數y=ax2−bx+kc(c≠0)的圖象與x軸一個交點的橫坐標為1.
1.(1)若方程①的根為正整數,求整數k的值;
2.(2)求代數式的值;
3.(3)求證: 關于x的一元二次方程ax2−bx+c=0 ②必有兩個不相等的實數根.
1.解:(1)解:由 kx=x+2,得(k-1) x=2.
依題意 k-1≠0.∴ . ……………………………………1分
∵ 方程的根為正整數,k為整數, ∴ k-1=1或k-1=2.
∴ k1= 2, k2=3. …………………………………………………2分
2.(2)解:依題意,二次函數y=ax2-bx+kc的圖象經過點(1,0),
∴ 0 =a-b+kc, kc = b-a .
∴ = …3分
3.(3)證明:方程②的判別式為 Δ=(-b)2-4ac= b2-4ac. 由a≠0, c≠0, 得ac≠0.
證法一:
( i )若ac<0, 則-4ac>0. 故Δ=b2-4ac>0. 此時方程②有兩個不相等的實數根.……4分
( ii )若ac>0, 由(2)知a-b+kc =0, 故 b=a+kc.
Δ=b2-4ac= (a+kc)2-4ac=a2+2kac+(kc)2-4ac = a2-2kac+(kc)2+4kac-4ac
=(a-kc)2+4ac(k-1). …………………………………………………5分
∵ 方程kx=x+2的根為正實數, ∴ 方程(k-1) x=2的根為正實數.
由 x>0,2>0, 得 k-1>0. …………………………………6分
∴ 4ac(k-1)>0. ∵ (a-kc)2³0,
∴Δ=(a-kc)2+4ac(k-1)>0. 此時方程②有兩個不相等的實數根. …………7分
證法二:
( i )若ac<0, 則-4ac>0. 故Δ=b2-4ac>0. 此時方程②有兩個不相等的實數根. ……4分
( ii )若ac>0,∵ 拋物線y=ax2-bx+kc與x軸有交點,
∴ Δ1=(-b)2-4akc =b2-4akc³0.
(b2-4ac)-( b2-4akc)=4ac(k-1). 由證法一知 k-1>0,
∴ b2-4ac> b2-4akc³0.
∴ Δ= b2-4ac>0. 此時方程②有兩個不相等的實數根. …………………7分
綜上, 方程②有兩個不相等的實數根.
證法三:由已知,,∴
可以證明和不能同時為0(否則),而,因此.
解析:略
科目:初中數學 來源: 題型:
b | x |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
m-4 | 2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com