(閱讀與探究)如圖(1)所示,把△ABC沿直線BC移動(dòng)線段BC那樣長(zhǎng)的距離可以變到△ECD的位置;如圖(2)所示,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖(3)所示,以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置,像這樣,只改變圖形的位置,而不改變其形狀大小的圖形變換叫做全等變換. 在全等變換中可以清楚地識(shí)別全等三角形的對(duì)應(yīng)元素,以上的三種全等變換分別叫平移變換、翻折變換和旋轉(zhuǎn)變換.

問(wèn)題:如圖(4),△ABC≌△DEF,B和E、C和F是對(duì)應(yīng)頂點(diǎn),問(wèn)通過(guò)怎樣的全等變換可以使它們重合,并指出它們相等的邊和角.

 

 

 

【答案】

見(jiàn)解析

【解析】本題考查的是全等三角形的性質(zhì)

根據(jù)全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等即得判斷。

把△DEF沿EF翻折180°,再將翻轉(zhuǎn)后的三角形沿CB(向左)方向平移,使E與B點(diǎn)重合,則△ABC與△DEF重合.

相等的邊為:AB=DE,AC=DF,BC=EF.

相等的角為:∠A=∠D,∠B=∠DEF,∠ACB=∠DFE.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),易證△ABP∽△PCD,從而得到BP•PC=AB•CD,解答下列問(wèn)題.
(1)模型探究:如圖2,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:BP•PC=AB•CD;
(2)拓展應(yīng)用:如圖3,在四邊形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于點(diǎn)O,以O(shè)為頂點(diǎn),以BC所在直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)P為線段OC上一動(dòng)點(diǎn)(不與端點(diǎn)O、C重合)
(i)當(dāng)∠APD=60°時(shí),求點(diǎn)P的坐標(biāo);
(ii)過(guò)點(diǎn)P作PE⊥PD,交y軸于點(diǎn)E,設(shè)PO=x,OE=y,求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

29、先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點(diǎn),DE∥BC交AC于點(diǎn)E,那么E也是AC的中點(diǎn),及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點(diǎn)且EF∥AD∥BC.那么F也是CD的中點(diǎn),及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動(dòng),使點(diǎn)C在直線一側(cè),A、B、D三點(diǎn)在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對(duì)結(jié)論進(jìn)行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀與證明:在一個(gè)三角形中,如果有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等.如圖①,在△ABC中,如果∠B=∠C,那么AB=AC,這一結(jié)論可以說(shuō)明如下:
解:過(guò)點(diǎn)A作AD⊥BC于D,則∠ADB=∠ADC=90°,在△ABD和△ACD中
∠B=∠C,∠ADB=∠ADC,AD=AD
∴△ABD≌△ACD
∴AB=AC
請(qǐng)你仿照上述方法在圖②中再選一種方法說(shuō)明以上結(jié)論.
操作:如圖③,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,過(guò)點(diǎn)M、N作一組平行線分別與PQ交于點(diǎn)M′、N′,則線段MM′一定等腰NN′.想一想,為什么?
根據(jù)上述閱讀與證明的結(jié)論以及操作得到的經(jīng)驗(yàn)完成下列探究活動(dòng).探究:如圖④,在四邊形ABCD中,AB∥DC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)線相交于點(diǎn)F.試探究線段AB與AF、CF之間的等量關(guān)系,并說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(閱讀與探究)如圖(1)所示,把△ABC沿直線BC移動(dòng)線段BC那樣長(zhǎng)的距離可以變到△ECD的位置;如圖(2)所示,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖(3)所示,以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置,像這樣,只改變圖形的位置,而不改變其形狀大小的圖形變換叫做全等變換. 在全等變換中可以清楚地識(shí)別全等三角形的對(duì)應(yīng)元素,以上的三種全等變換分別叫平移變換、翻折變換和旋轉(zhuǎn)變換.

問(wèn)題:如圖(4),△ABC≌△DEF,B和E、C和F是對(duì)應(yīng)頂點(diǎn),問(wèn)通過(guò)怎樣的全等變換可以使它們重合,并指出它們相等的邊和角.

查看答案和解析>>

同步練習(xí)冊(cè)答案