如圖,已知直線l分別與x軸、y軸交于A、B兩點(diǎn),與雙曲線(a≠0,x>0)分別交于D、E兩點(diǎn).

(1)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4):
① 分別求出直線l與雙曲線的解析式;(3分)
② 若將直線l向下平移m(m>0)個(gè)單位,當(dāng)m為何值時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn)?(4分)
(2)假設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)D為線段AB的n等分點(diǎn),請直接寫出b的值.(2分)

(1)①反比例函數(shù)的解析式為,直線AB的解析式為y=-x+5;
②當(dāng)時(shí),直線l與反比例函數(shù)有且只有一個(gè)交點(diǎn);
(2)

解析試題分析:(1)、①把點(diǎn)D或點(diǎn)E的坐標(biāo)代入雙曲線(a≠0,x>0)中,易求反比例函數(shù)的解析式為,設(shè)直線AB的解析式為y=ax+b,再把點(diǎn)D或點(diǎn)E的坐標(biāo)代入,可得一個(gè)二元一次方程組,求得直線AB的解析式為y = -x+5;
② 依題意可設(shè)向下平移m(m>0)個(gè)單位后解析式為,直線l與雙曲線有且只有一個(gè)交點(diǎn)即(整理得)的△=0即△=
解得:,(舍去),即當(dāng)時(shí),直線l與反比例函數(shù)有且只有一個(gè)交點(diǎn);
(2)、過點(diǎn)D作DF⊥OA于F(如下圖),則△ADF∽△ABO得,即解得:DF=,AF=;所以O(shè)F=OA-AF=a-=,所以點(diǎn)D的坐標(biāo)為(,),又因?yàn)辄c(diǎn)D在雙曲線(a≠0,x>0)上,所以×=a,所以.

試題解析:(1) ①易求反比例函數(shù)的解析式為,
直線AB的解析式為y = -x+5;(5分)
② 依題意可設(shè)向下平移m(m>0)個(gè)單位后解析式為,  
,得, 
∵ 平移后直線l與反比例函數(shù)有且只有一個(gè)交點(diǎn),∴△=,
,(舍去).
即當(dāng)時(shí),直線l與反比例函數(shù)有且只有一個(gè)交點(diǎn);(5分)
(2) .(2分)
考點(diǎn):1、用待定系數(shù)法求一次函數(shù)與反比例函數(shù)的解析式;2、一元二次方程;3、相似三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,以點(diǎn)M(1,-1)為圓心,以為半徑作圓,與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),二次函數(shù)的圖象經(jīng)過點(diǎn)A、B、C,頂點(diǎn)為E.

(1)求此二次函數(shù)的表達(dá)式;
(2)設(shè)∠DBC=a,∠CBE=b,求sin(a-b)的值;
(3)坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似.若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在邊長為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C運(yùn)動(dòng),連接DM交AC于點(diǎn)N.
(1)如圖1,當(dāng)點(diǎn)M在AB邊上時(shí),連接BN

①試說明:
②若∠ABC=60°,AM=4,求點(diǎn)M到AD的距離.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,△是等邊三角形,點(diǎn)、分別在邊上,

(1)求證:△∽△;(2)如果,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ABC中,∠C=90°,點(diǎn)P為AC邊上的一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)(點(diǎn)P對應(yīng)點(diǎn)P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時(shí),點(diǎn)B、P、P′恰好在同一直線上,此時(shí)作P′E⊥AC于點(diǎn)E.

(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
(3)當(dāng),BP′=時(shí),求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,∠ACB=90°,∠A<45°,點(diǎn)O為AB中點(diǎn),一個(gè)足夠大的三角板的直角頂點(diǎn)與點(diǎn)O重合,一邊OE經(jīng)過點(diǎn)C,另一邊OD與AC交于點(diǎn)M.

(1)如圖1,當(dāng)∠A=30°時(shí),求證:MC2=AM2+BC2;
(2)如圖2,當(dāng)∠A≠30°時(shí),(1)中的結(jié)論是否成立?如果成立,請說明理由;如果不成立,請寫出你認(rèn)為正確的結(jié)論,并說明理由;
(3)將三角形ODE繞點(diǎn)O旋轉(zhuǎn),若直線OD與直線AC相交于點(diǎn)M,直線OE與直線BC相交于點(diǎn)N,連接MN,則MN2=AM2+BN2成立嗎?
答:   (填“成立”或“不成立”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,點(diǎn)B在線段AC上,點(diǎn)D,E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.

(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點(diǎn)P為線段AB上的動(dòng)點(diǎn),連接DP,作PQ⊥DP,交直線BE于點(diǎn)Q;
(i)當(dāng)點(diǎn)P與A,B兩點(diǎn)不重合時(shí),求的值;
(ii)當(dāng)點(diǎn)P從A點(diǎn)運(yùn)動(dòng)到AC的中點(diǎn)時(shí),求線段DQ的中點(diǎn)所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川南充8分)如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC邊上一點(diǎn)(不與B,C重合),過點(diǎn)P作∠APE=∠B,PE交CD 于E.

(1)求證:△APB∽△PEC;
(2)若CE=3,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

將一包卷筒衛(wèi)生紙按如圖所示的方式擺放在水平桌面上,則它的俯視圖是(   )

查看答案和解析>>

同步練習(xí)冊答案