【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過的整數(shù)點(diǎn)(橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點(diǎn))依次為A1,A2,A3,…An,…,將拋物線y=x2沿直線L:y=x向上平移,得一系列拋物線,且滿足下列條件:
①拋物線的頂點(diǎn)M1,M2,M3,…Mn,…都在直線L:y=x上;
②拋物線依次經(jīng)過點(diǎn)A1,A2,A3…An,….
則M2016頂點(diǎn)的坐標(biāo)為________.
【答案】(4031,4031)
【解析】
根據(jù)拋物線的解析式,結(jié)合整數(shù)點(diǎn)的定義,找出點(diǎn)的坐標(biāo)為,設(shè)點(diǎn)的坐標(biāo)為(a,a),則以點(diǎn)為頂點(diǎn)的拋物線的解析式為,由點(diǎn)的坐標(biāo)可求出a值,可發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律可求出答案.
解:M1(a1,a1)是拋物線y1=(x﹣a1)2+a1的頂點(diǎn),
拋物線y=x2與拋物線y1=(x﹣a1)2+a1相交于A1,
得x2=(x﹣a1)2+a1,
即2a1x=a12+a1,
x=(a1+1).
∵x為整數(shù)點(diǎn),
∴a1=1,
M1(1,1);
M2(a2,a2)是拋物線y2=(x﹣a2)2+a2=x2﹣2a2x+a22+a2頂點(diǎn),
拋物線y=x2與y2相交于A2,
x2=x2﹣2a2x+a22+a2,
∴2a2x=a22+a2,
x=(a2+1).
∵x為整數(shù)點(diǎn),
∴a2=3,
M2(3,3),
M3(a3,a3)是拋物線y2=(x﹣a3)2+a3=x2﹣2a3x+a32+a3頂點(diǎn),
拋物線y=x2與y3相交于A3,
x2=x2﹣2a3x+a32+a3,
∴2a3x=a32+a3,
x=(a3+1).
∵x為整數(shù)點(diǎn),
∴a3=5,M3(5,5),
∴點(diǎn)M2016的坐標(biāo)為:2016×2﹣1=4031,
∴M2016(4031,4031),
故答案是:(4031,4031).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,E,F分別是邊AB,AD上的動點(diǎn),AE=DF,連接DE,CF交于點(diǎn)P,過點(diǎn)P作PK∥BC,且PK=2,若∠CBK的度數(shù)最大時,則BK長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時拋擲3枚硬幣做游戲,其中1元硬幣1枚,5角硬幣兩枚.
(1)求3枚硬幣同時正面朝上的概率.
(2)小張、小王約定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和為1.5元,則小張獲得1分;若面值和為1元,則小王得1分.誰先得到10分,誰獲勝,請問這個游戲是否公平?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P是邊AD上的一動點(diǎn),連接BP、CP,過點(diǎn)B作射線交線段CP的延長線于點(diǎn)E,交AD邊于點(diǎn)M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y.
(1)說明△ABM∽△APB;并求出y關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍;
(2)當(dāng)AP=4時,求sin∠EBP的值;
(3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知===3(b+d+f≠0),且k=.
(1)求k的值;
(2)若x1,x2是方程x2﹣3x+k﹣2=0的兩根,求x12+x22的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c開口向上,與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C
(1) 如圖1,若A (1,0)、C (0,3)且對稱軸為直線x=2,求拋物線的解析式
(2) 在(1)的條件下,如圖2,作點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)D,連接AD、BD,在拋物線上是否存在點(diǎn)P,使∠PAD=∠ADB,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由
(3) 若直線l:y=mx+n與拋物線有兩個交點(diǎn)M、N(M在N的左邊),Q為拋物線上一點(diǎn)(不與M、N重合),過點(diǎn)Q作QH平行于y軸交直線l于點(diǎn)H,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,有任意三角形,當(dāng)這個三角形的一條邊上的中線等于這條邊的一半時,稱這個三角形叫“和諧三角形”,這條邊叫“和諧邊”,這條中線的長度叫“和諧距離”.
(1)已知A(2,0),B(0,4),C(1,2),D(4,1),這個點(diǎn)中,能與點(diǎn)O組成“和諧三角形”的點(diǎn)是 ,“和諧距離”是 ;
(2)連接BD,點(diǎn)M,N是BD上任意兩個動點(diǎn)(點(diǎn)M,N不重合),點(diǎn)E是平面內(nèi)任意一點(diǎn),△EMN是以MN為“和諧邊”的“和諧三角形”,求點(diǎn)E的橫坐標(biāo)t的取值范圍;
(3)已知⊙O的半徑為2,點(diǎn)P是⊙O上的一動點(diǎn),點(diǎn)Q是平面內(nèi)任意一點(diǎn),△OPQ是“和諧三角形”,且“和諧距離”是2,請描述出點(diǎn)Q所在位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各剪去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒,若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長,設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程,化為一般式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點(diǎn)D,連結(jié)AD(AD<AB),將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.
(1)請根據(jù)題意補(bǔ)全圖1;
(2)猜測BD和CE的數(shù)量關(guān)系并證明;
(3)作射線BD,CE交于點(diǎn)P,把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=2,AD=1時,補(bǔ)全圖形,直接寫出PB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com