【題目】某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件;如果售價(jià)超過50元但不超過80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件;如果售價(jià)超過80元后,若再漲價(jià),則每漲1元每月少賣3件.設(shè)每件商品的售價(jià)為x元,每個(gè)月的銷售量為y件.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)設(shè)每月的銷售利潤(rùn)為W,請(qǐng)直接寫出W與x的函數(shù)關(guān)系式;
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
【答案】(1);(2),;(3)售價(jià)定為90元.利潤(rùn)最大為7500元.
【解析】
(1)當(dāng)售價(jià)超過50元但不超過80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件,y=260-x(50≤x≤80),當(dāng)如果售價(jià)超過80元后,若再漲價(jià),則每漲1元每月少賣3件,y=420-3x(80<x<140);
(2)由利潤(rùn)=(售價(jià)-成本)×銷售量列出函數(shù)關(guān)系式;
(3)分別求出兩個(gè)定義域內(nèi)函數(shù)的最大值,然后作比較.
解:當(dāng)時(shí),,即,
當(dāng)時(shí),,即.
則;
由利潤(rùn)(售價(jià)-成本)銷售量可以列出函數(shù)關(guān)系式,
,
;
當(dāng)時(shí),,
當(dāng)有最大值,最大值為,
當(dāng)時(shí),,
當(dāng)時(shí),有最大值,最大值為,
故售價(jià)定為元.利潤(rùn)最大為元.
故答案為:(1);(2),;(3)售價(jià)定為90元.利潤(rùn)最大為7500元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE,設(shè)∠BAD=α,∠CDE=β.
(1)如圖,若點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α= °,β= °;
②求α,β之間的關(guān)系式.
(2)請(qǐng)直接寫出不同于以上②中的α,β之間的關(guān)系式可以是 .(寫出一個(gè)即可.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形一腰上的中線將這個(gè)等腰三角形的周長(zhǎng)分為9和15兩部分,則這個(gè)等腰三角形的腰長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2+2mx+n經(jīng)過A(﹣3,0),C(0,﹣)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(2)過點(diǎn)C作CE∥x軸交拋物線于點(diǎn)E,寫出點(diǎn)E的坐標(biāo),并求AC、BE的交點(diǎn)F的坐標(biāo)
(3)若拋物線的頂點(diǎn)為D,連結(jié)DC、DE,四邊形CDEF是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,其中.
(1)求證:為任意非零實(shí)數(shù)時(shí),拋物線與軸總有兩個(gè)不同的交點(diǎn);
(2)求拋物線與軸的兩個(gè)交點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);
(3)將拋物線沿軸正方向平移一個(gè)單位長(zhǎng)度得到拋物線,則無論取任何非零實(shí)數(shù),都經(jīng)過同一個(gè)定點(diǎn),直接寫出這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國(guó)夢(mèng)校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;
(3)計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接,其中有:①;②;③;④,四個(gè)結(jié)論,則結(jié)論一定正確的有( )個(gè)
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線;
(2)連接OC交BE于點(diǎn)F,若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com