如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應點P′),當AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
精英家教網(wǎng)
(1)求證:∠CBP=∠ABP;
(2)若AB-BC=4,AC=8,求AE的長;
(3)當∠ABC=60°,BC=2時,點N為BC的中點,點M為邊BP上一個動點,連接MC,MN,求MC+MN的最小值.
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AP=AP′,根據(jù)等邊對等角的性質(zhì)可得∠APP′=∠AP′P,再根據(jù)等角的余角相等證明即可;
(2)過點P作PD⊥AB于D,根據(jù)角平分線上的點到角的兩邊的距離相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角邊”證明△APD和△P′AE全等,根據(jù)全等三角形對應邊相等可得AE=DP,然后求得AE的長即可;
(3)由題意得:點D與點C關于BP′對稱,連接DN,求得DN的長即可求得MC+MN的最小值;
解答:解:精英家教網(wǎng)(1)證明:∵AP′是AP旋轉(zhuǎn)得到,
∴AP=AP′,
∴∠APP′=∠AP′P,
∵∠C=90°,AP′⊥AB,
∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,
又∵∠BPC=∠APP′(對頂角相等),
∴∠CBP=∠ABP;

(2)如圖,過點P作PD⊥AB于D,
∵∠CBP=∠ABP,∠C=90°,
∴CP=DP,
∵P′E⊥AC,
∴∠EAP′+∠AP′E=90°,
又∵∠PAD+∠EAP′=90°,
∴∠PAD=∠AP′E,
在△APD和△P′AE中,
∠PAD=∠AP′E
∠ADP=∠P′EA=90°
AP=AP′
,
∴△APD≌△P′AE(AAS),
∴AE=DP,
∴AE=CP,
∵AB-BC=4,AC=8,
∴AB=10,BC=6,
∴AE=CP=3;

(3)由題意得:點D與點C關于BP′對稱,連接DN,
∵∠ABC=60°,BC=BD,
∴△BCD為等邊三角形,
又∵點N為BC的中點,
∴DN⊥BC,
∵BC=BD=2,
∴BN=1,
∴DN=
3

∴MC+MN的最小值為
3
點評:本題考查了全等三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),角平分線上的點到角的兩邊的距離相等的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),(2)作輔助線構造出過渡線段DP并得到全等三角形是解題的關鍵;
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案