13.王老師獲得一張2016寶應(yīng)春節(jié)聯(lián)歡晚會(huì)的門票,想獎(jiǎng)給班級(jí)學(xué)校優(yōu)秀的同學(xué),通過考察,小明和小剛脫穎而出,但問題是只有一張門票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看晚會(huì),他們各自提出了一個(gè)方案:
(1)小明的方案:將紅桃2、3、4、5四張牌背面朝上,小明先抽一張,記下牌面數(shù)字后放回,小剛再從中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看晚會(huì),否則小剛看晚會(huì),你認(rèn)為小明的方案公平嗎?請用列表法或畫樹狀圖的方法說明;
(2)小剛將小明的方案修改為只用紅桃2、3、4三張牌,抽取方式規(guī)則不變,小剛的方案公平嗎(只回答,不說明理由)

分析 (1)依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率,比較即可.
(2)解題思路同上.

解答 解:(1)甲同學(xué)的方案不公平.理由如下:
列表法,

       小明
小剛
 2 3 4 5
 2(2,2) (2,3) (2,4) (2,5)
 3 (3,2)(3,3) (3,4) (3,5)
 4 (4,2) (4,3)(4,4) (4,5)
 5 (5,2) (5,3) (5,4)(5,5)
所有可能出現(xiàn)的結(jié)果共有16種,其中抽出的牌面上的數(shù)字之和為奇數(shù)的有:8種,故小明獲勝的概率為:$\frac{8}{16}$=$\frac{1}{2}$,則小剛獲勝的概率為:$\frac{1}{2}$,
故此游戲兩人獲勝的概率相同,即他們的游戲規(guī)則是公平的;
(2)不公平.理由如下:
       小明
小剛
 2 3 4
 2(2,2) (2,3) (2,4)
 3 (3,2)(3,3) (3,4)
 4 (4,2) (4,3)(4,4)
所有可能出現(xiàn)的結(jié)果共有9種,其中抽出的牌面上的數(shù)字之和為奇數(shù)的有:4種,故小明獲勝的概率為:$\frac{4}{9}$,則小剛獲勝的概率為:$\frac{5}{9}$,
故此游戲兩人獲勝的概率不相同,即他們的游戲規(guī)則不公平.

點(diǎn)評(píng) 此題主要考查了游戲公平性,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合于兩步或兩步以上的完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.下列各組中的兩項(xiàng)是同類項(xiàng)的為( 。
A.3x2與2x3B.1與aC.-$\frac{1}{5}ab$與2baD.3m2n與-n2m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.在Rt△ABC中,∠C=90°,BC=1,AC=$\sqrt{3}$,則下列結(jié)論中,正確的是(  )
A.sinA=$\frac{\sqrt{3}}{2}$B.tanA=$\frac{\sqrt{3}}{3}$C.cosB=$\frac{\sqrt{3}}{2}$D.tanB=$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在2×2的正方形網(wǎng)格中有9個(gè)格點(diǎn),已經(jīng)取定點(diǎn)A和B,在余下的7個(gè)點(diǎn)中任取一點(diǎn)C,使△ABC為直角三角形的概率是( 。
A.$\frac{2}{7}$B.$\frac{4}{7}$C.$\frac{3}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,E是正方形ABCD中CD邊上一點(diǎn),以點(diǎn)A為中心把△ADE順時(shí)針旋轉(zhuǎn)90°.
(1)在圖中畫出旋轉(zhuǎn)后的圖形;
(2)若旋轉(zhuǎn)后E點(diǎn)的對(duì)應(yīng)點(diǎn)記為M,點(diǎn)F在BC上,且∠EAF=45°,連接EF.
①求證:△AMF≌△AEF;
②若正方形的邊長為6,AE=3$\sqrt{5}$,則EF=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在△ABC和△ABD中,AC與BD相交于點(diǎn)E,AD=BC,∠DAB=∠CBA,求證:AE=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使點(diǎn)N在OC的反向延長線上,請直接寫出圖中∠MOB的度數(shù),∠MOB=30°.
(2)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù).
(3)將圖1中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖4,使ON在∠AOC的內(nèi)部,請?zhí)骄俊螦OM與∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,Rt△AOC的直角邊OC在x軸上,∠ACO=90°,反比例函數(shù)y=$\frac{k}{x}$經(jīng)過另一條直角邊AC的中點(diǎn)D,S△AOC=3,則k=(  )
A.2B.4C.6D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)習(xí)課上,張老師念了這樣一道題目:已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,“三位同學(xué)”分別說出了它的一些結(jié)論.“可心”說:①a+b+c<0;②a-b+c>1;“童謠”說:③abc>0;④4a-2b+c<0;“思宇”說:⑤c-a>1.請你根據(jù)圖找出其中正確結(jié)論的序號(hào)是①②③⑤.

查看答案和解析>>

同步練習(xí)冊答案