某工程隊(duì)要招聘甲、乙兩種工種的工人150人,甲、乙兩種工種的工人的月工資分別為600元和1000元;現(xiàn)要求乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種各招聘多少人時,可使得每月所付的工資最少?

答案:
解析:

設(shè)招聘甲種工種的工人x人,則招聘乙種工種的工人為(150x)人,則150x2x,x50,∴0x50.設(shè)所聘請的工人共需付月工資y元,則有y600x1000(150x)=-400x150000,(0x50).當(dāng)x50時,y最小,最小值為130000.∴要使每月所付工資最少,應(yīng)招聘甲種工種工人50人,乙種工種的工人100人,這時,所付月工資總額為130000元.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、某工程隊(duì)要招聘甲、乙兩種工人150人,甲、乙兩種工種的月工資分別為600元和1000元,現(xiàn)要求乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種各招聘多少人時,可使得每月所付工資最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、某工程隊(duì)要招聘甲、乙兩種工種的工人150名,甲、乙兩種工種的工人的月工資分別為600元和1000元.現(xiàn)要求乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍,問甲、乙兩種工種各招聘多少人時,可使得每月所付的工資最少?最少工資是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

36、某工程隊(duì)要招聘甲、乙兩種工種的工人共160人,甲、乙兩種工人的月工資分別為甲800元和乙1200元.現(xiàn)要求乙工種的人數(shù)不少于甲工種人數(shù)的3倍.
(1)設(shè)招聘甲工種x人,工程隊(duì)每月應(yīng)付甲、乙兩工種的工人工資共為y元,求y與x的函數(shù)關(guān)系式.
(2)當(dāng)x為何值時,y有最小值,并求最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某工程隊(duì)要招聘甲、乙兩種工種的工人150人,甲、乙兩種工種的工人的月工資分別為600元和1000元.現(xiàn)要求乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍.設(shè)招聘甲種工種的工人是x人,所聘工人共需付月工資y元.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)甲乙兩種工種各招聘多少人時,可使每月所付的工資最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某工程隊(duì)要招聘甲、乙兩種工種的工人150人,他們的月工資分別為600元和1000元,現(xiàn)要求乙種工種的人數(shù)不少于甲種工種人數(shù)的2倍.設(shè)招聘甲種工種的人數(shù)為x,工程隊(duì)每月所付工資為y元.
(1)試求出x的取值范圍;
(2)試求y與x的函數(shù)關(guān)系,并求出x為何值時,y取最小值,最小值為多少?

查看答案和解析>>

同步練習(xí)冊答案