如圖,從一個圓出發(fā),經(jīng)過適當劃分、剪貼,可以得到一個小露珠,請簡要說明過程,并動手試一試。

 

答案:先將圓四等分,將其中1/4圓剪下,并翻折180°貼到原來位置(讓弧端點與原先重合)
提示:

全等形的運用。

 


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,點P、Q同時從A點出發(fā),分別做勻速運動,其中點P沿AB、BC向終點C運動,速度為每秒2個單位,點Q沿AD向終點D運動,速度為每秒1個單位,當這兩點中有一個點到精英家教網(wǎng)達自己的終點時,另一個點也停止運動,設(shè)這兩個點從出發(fā)運動了t秒.
(1)動點P與Q哪一點先到達自己的終點?此時t為何值;
(2)當O<t<2時,寫出△PQA的面積S與時間t的函數(shù)關(guān)系式;
(3)以PQ為直徑的圓能否與CD相切?若有可能,求出t的值或t的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關(guān)于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關(guān)于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為
 

精英家教網(wǎng)
(2)實踐運用
如(3)圖,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數(shù)為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.
精英家教網(wǎng)
(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結(jié)果保留根號)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:已知正方形ABCD的對角線AC長為20cm,半徑為1的⊙O1的圓心O1從A點出發(fā)以1cm/s的速度向C運動,半徑為1的⊙O2的圓心O2從C點出發(fā)以2cm/s的速度向A運動且半徑同時也以1cm/s的速度不斷增大,兩圓同時運動,當其中一個圓的圓心運精英家教網(wǎng)動到AC的端點時,另一個圓也停止運動.
(1)當O1運動了幾秒時,⊙O1與AD相切?
(2)當O2運動了幾秒時,⊙O2與CB相切?
(3)當O2運動了幾秒時,⊙O2與⊙O2相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

如圖,直線分別與軸,軸相交于點,點,且.一個圓心在坐標原點,半徑為的圓,以個單位/秒的速度向軸正方向運動.設(shè)此動圓圓心離開坐標原點的時間為(秒).

(1)求直線的解析式;

(2)如圖1,為何值時,動圓與直線相切?

(3)如圖,若在圓開始運動的同時,一動點點出發(fā),沿方向以個單位/秒的速度運動,設(shè)秒時點到動圓圓心的距離為,求的關(guān)系式;

(4)在(3)中,動點自剛接觸圓面起,經(jīng)多長時間后離開了圓面?

查看答案和解析>>

同步練習冊答案