已知:如圖,在等腰梯形ABCD中,AB∥DC,AD=BC,點E是底邊AB的中點.
(1)求證:△DEC是等腰三角形;
(2)若△ADE是等邊三角形,求證:四邊形DAEC是菱形.

【答案】分析:(1)根據(jù)等腰梯形的性質(zhì)得出∠A=∠B,繼而利用SAS可證明△AED≌△BEC,從而可得出ED=EC,得出結(jié)論.
(2)先證明四邊形DAEC是平行四邊形,然后結(jié)合AD=AE即可得出結(jié)論.
解答:證明:(1)在等腰梯形ABCD中,
∵AD=BC,
∴∠A=∠B,
∵E是底邊AB的中點,
∴AE=BE,
∴△AED≌△BEC,
∴ED=EC,
∴△DEC是等腰三角形.
(2)∵△ADE是等邊三角形,
∴AD=AE,
∠A=∠DEA=∠CEB=60°,
∴AD∥CE,
∵AB∥DC,
∴四邊形DAEC是平行四邊形,
又∵AD=AE,
∴四邊形DAEC是菱形.
點評:此題考查了等腰梯形的性質(zhì),屬于基礎題,解答本題的關鍵是熟練掌握等腰梯形的性質(zhì):同一底邊上的兩個底角相等,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年河南省周口市初一下學期相交線與平行線專項訓練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河南省周口市初一下學期平移專項訓練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

同步練習冊答案