【題目】已知m,n是方程x2-6x+5=0的兩個實數(shù)根,且m<n,拋物線
y=-x2+bx+c的圖象經(jīng)過點A(m,0)、B(0,n).
(1)求這個拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一交點為C,拋物線的頂點為D,試求出點C、D的坐標(biāo)和△BCD的面積;
(3)P是線段OC上的一點,過點P作PH⊥x軸,與拋物線交于H點,若直線BC把△PCH分成面積之比為2:3的兩部分,請求出P點的坐標(biāo).
【答案】(1)、y=-x2-4x+5;(2)、15;(3)、(-,0)或(-,0).
【解析】
試題分析:(1)、首先求出方程的解得出點A和點B的坐標(biāo),然后利用待定系數(shù)法求出函數(shù)解析式;(2)、根據(jù)二次函數(shù)的解析式得出點C的坐標(biāo)和頂點坐標(biāo),過D作x軸的垂線交x軸于M,從而求出△DMC、梯形MDBO和△BOC的面積,然后得出面積;(3)、設(shè)P點的坐標(biāo)為(a,0),得出直線BC的方程,則PH與直線BC的交點坐標(biāo)為(a,a+5),PH與拋物線的交點坐標(biāo)為H(a,-a2-4a+5),然后根據(jù)EH=EP和EH=EP兩種情況分別求出點P的坐標(biāo).
試題解析:(1)、解方程x2-6x+5=0,得x1=5,x2=1.由m<n,m=1,n=5,
所以點A、B的坐標(biāo)分別為A(1,0),B(0,5).將A(1,0),B(0,5)的坐標(biāo)分別代入y=-x2+bx+c,
得解這個方程組得
所以,拋物線的解析式為y=-x2-4x+5.
(2)、由y=-x2-4x+5,令y=0,得-x2-4x+5=0,解這個方程得x1=-5,x2=1,
所以C點的坐標(biāo)為(-5,0).由頂點坐標(biāo)公式計算得點D(-2,9).
過D作x軸的垂線交x軸于M.則S△DMC=×9×(5-2)=,
S梯形MDBO=×2×(9+5)=14,S△BOC=×5×5=,
所以,S△BCD=S梯形MDBO+S△DMC-S△BOC=14+-=15.
(3)、設(shè)P點的坐標(biāo)為(a,0),
因為線段BC過B、C兩點,所以BC所在的直線方程為y=x+5.
那么,PH與直線BC的交點坐標(biāo)為E(a,a+5),
PH與拋物線y=-x2-4x+5的交點坐標(biāo)為H(a,-a2-4a+5).
由題意,得①EH=EP,即(-a2-4a+5)-(a+5)=(a+5).
解這個方程,得a=-或a=-5(舍去).
②EH=EP,即(-a2-4a+5)-(a+5)=(a+5),
解這個方程,得a=-或a=-5(舍去),
∴P點的坐標(biāo)為(-,0)或(-,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于點,對稱軸為直線,與軸交點在和之間(包含這兩個點)運動,有如下四個結(jié)論:
①拋物線與軸的另一個交點是;
②點,在拋物線上,且滿足,則;
③常數(shù)項的取值范圍是;
④系數(shù)的取值范圍是.
上述結(jié)論中所有正確結(jié)論的序號是( )
A.①②③B.②③④C.①③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標(biāo);
(2)x2+bx+c≤﹣5x+5的解集是 ;
(3)若點M為拋物線上一動點,連接MA、MB,當(dāng)點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點,,.
(1)畫出繞點逆時針旋轉(zhuǎn)后的圖形,并寫出點的坐標(biāo);
(2)將(1)中所得先向左平移4個單位,再向上平移2個單位得到,畫出,并寫出點的坐標(biāo);
(3)若可以看作繞某點旋轉(zhuǎn)得來,直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點的坐標(biāo)分別為A(2,2),B(1,0),C(3,1).
(1)畫出△ABC關(guān)于x軸對稱的△A1BC1,寫出點C1的坐標(biāo)為 ;
(2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°的△A2B1C2,寫出點C2的坐標(biāo)為 ;
(3)在(1),(2)的基礎(chǔ)上,圖中的△A1BC1、△A2B1C2關(guān)于點 中心對稱;
(4)若以點D、A、C、B為頂點的四邊形為菱形,直接寫出點D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知反比例函數(shù)(常數(shù),).
(1)若點在這個函數(shù)的圖象上,求的值;
(2)若在這個函數(shù)圖象的每一個分支上,隨的增大而增大,求的取值范圍;
(3)若,試判斷點是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=
(1)求BC的長;
(2)作出△ABC的外接圓(尺規(guī)作圖,保留痕跡,不寫作法),并求外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“特色泰興,美好生活”, 泰興舉行金色秋天旅游活動.明明和華華同學(xué)分析網(wǎng)上關(guān)于旅游活動的信息,發(fā)現(xiàn)最具特色的景點有:①小南湖、②古銀杏公園、③紅楓園.他們準(zhǔn)備周日下午去參觀游覽,各自在這三中個景點任選一個,每個景點被選中的可能性相同.
(1)明明同學(xué)在三個備選景點中選中小南湖的概率是_____.
(2)用樹狀圖或列表法求出明明和華華他們選中不同景點參觀的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com